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Flux correction in the finite element context is addressed. Criteria for positiv-
ity of the numerical solution are formulated, and the low-order transport operator
is constructed from the discrete high-order operator by adding modulated dissi-
pation so as to eliminate negative off-diagonal entries. The corresponding antid-
iffusive terms can be decomposed into a sum of genuine fluxes (rather than el-
ement contributions) which represent bilateral mass exchange between individual
nodes. Thereby, essentially one-dimensional flux correction tools can be readily ap-
plied to multidimensional problems involving unstructured meshes. The proposed
methodology guarantees mass conservation and makes it possible to design both
explicit and implicit FCT schemes based on a unified limiting strategy. Numeri-
cal results for a number of benchmark problems illustrate the performance of the
algorithm. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Many CFD problems involve transport of scalar quantities (e.g., density, temperature,
concentrations, turbulent kinetic energy and its dissipation rate) which must remain positive
for physical reasons. An algorithm which fails to enforce the positivity constraint may
produce very poor numerical results. Classical upwind methods are positive but notoriously
diffusive. At the same time, high-order methods with streamline–diffusion-like stabilization
of convective terms tend to produce spurious undershoots and overshoots in regions with
steep gradients. Therefore, some extra artificial diffusion has to be added locally in order to
suppress the nonphysical oscillations. However, a straightforward implementation of this
idea introduces a free parameter, which depends on the solution and is difficult to determine.
Artificial viscosity methods are inevitably confronted with a tradeoff between positivity and
accuracy, whereby neither property can be guaranteed.
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Most of the modern high-resolution schemes for convection-dominated transport prob-
lems blend high- and low-order discretizations, so as to eliminate the numerical ripples.
This fundamental approach can be traced back to the concepts of flux-corrected-transport
(FCT), which were established by Boris and Book in their renowned paper [6]. Methods
based on flux (or slope) limiting are nonlinear and quite costly, but at the same time they
are very robust and yield nonoscillatory results with sharp resolution of discontinuities.
There exists a variety of such schemes, most of which are amenable to finite difference
and finite volume discretizations but constitute a challenge to a finite element practitioner.
Many popular schemes are limited to one-dimensional problems or Cartesian grids with
directional splitting. A notable exception is the genuinely multidimensional formulation of
the FCT algorithm proposed by Zalesak [36].

The past decade has witnessed the advent of discontinuous Galerkin methods, which
effectively incorporate the concepts of numerical fluxes and slope limiters into the fi-
nite element framework (see [11] and references therein). DG methods possess the local
conservation property and admit approximations of arbitrarily high formal order. In fact,
they represent a generalization of finite volume methods which enjoys the main advan-
tages of the finite element approach. Discontinuous approximations lead to block diagonal
mass matrices, whereby the blocks can be easily inverted by hand. If Legendre polyno-
mials are chosen as basis functions, the mass matrix is diagonal from the outset. DG
methods lend themselves toh–p adaptivity, since there are no continuity constraints at
interelement boundaries and no special treatment is required for “hanging nodes.” How-
ever, the number of degrees of freedom is increased as compared to continuous finite
element methods. Furthermore, the inherently explicit Runge–Kutta DG schemes [9] are
subject to a CFL condition which becomes increasingly restrictive for high-order methods.
Another open problem is the choice of an empirical constant, which was introduced to
make the “minmod” limiter less diffusive. In addition, DG methods were originally de-
veloped for hyperbolic conservation laws and experience fundamental difficulties with
handling diffusion. A straightforward use of the discontinuous formulation for elliptic
or parabolic equations results in a variational crime, so that it is necessary to rewrite
the original problem as a first-order system for the unknown function and its deriva-
tive [2, 10] or enforce the consistency of the discrete scheme by adding extra boundary
terms [3, 4].

The design of high-resolution finite element schemes based on continuous approximations
is even more challenging for a number of reasons. The consistent mass matrix introduces
considerable implicit antidiffusion which cannot be curtailed by explicit TVD-like methods.
Therefore, mass lumping is commonly employed, which results in the loss of (fourth-order)
accuracy offered by the finite element method. Inherently one-dimensional flux limiters
are applied edge-by-edge using solution values at the associated “ghost” nodes [1, 26].
This nonrigorous extension of 1D concepts to multidimensions works well in practice
but, generally, such schemes are not positive and should be classified as artificial viscosity
methods. Furthermore, transition to an edge-based data structure as proposed by Peraireet al.
[28] can be performed only for simplicial elements with linear basis functions which have
a constant gradient. In addition, the physical fluxes have to be approximated by their linear
interpolants. In general, differential operators resulting from the Galerkin discretization
cannot be represented as a sum of fluxes from one node into another. Therefore, combining
continuous finite element discretizations of high and low order in a mass-conserving fashion
is a nontrivial task.
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An elegant finite element methodology which circumvents the above difficulties was in-
troduced by L¨ohneret al. [24, 25]. It is based on Zalesak’s edition of the FCT algorithm with
antidiffusive element contributions in lieu of fluxes. The FEM–FCT procedure preserves
the consistent mass matrix and is applicable to arbitrary unstructured meshes. However, a
closer look reveals that some important issues remain unresolved. The low-order scheme is
constructed by adding constant “mass diffusion” to the high-order method, and may cease to
be positive for large Courant numbers. Furthermore, the antidiffusive element contributions
redistribute the mass inside the whole element rather than between individual nodes. This
results in a stronger coupling between the nodal values, so that it is no longer possible to
carry out an extra prelimiting step which is present in the monotone finite difference FCT
schemes. Consequently, the limiter may fail to preclude the arising of spurious ripples in
some cases. Last but not least, the original FEM–FCT procedure is suitable only for explicit
time discretizations which are subject to a restrictive CFL condition. If the local Courant
number does not exhibit strong variations, then the time step is constrained by accuracy
considerations, so that the use of explicit time stepping is justified. At the same time, the
stability limitation makes explicit methods extremely inefficient for problems with strongly
varying velocities and/or mesh sizes. Therefore, unconditionally stable implicit schemes are
preferable for this class of applications. Likewise, the solution of steady-state problems by
“time marching” calls for a fully implicit time discretization. Indeed, high temporal accuracy
is irrelevant in this case, whereas larger (artificial) time steps reduce the computational cost.

In this paper, we formulate sufficient conditions for positivity of the numerical solution
and provide guidelines for enforcing them in the framework of finite element FCT schemes
[22]. The low-order operator is constructed at the discrete level using a technique which is
equivalent to upwinding in 1D and emulates it in multidimensions. The difference between
the high- and low-order terms admits decomposition into a sum of fluxes which represent
the mass exchange between two nodes sharing the same element. In the case of simplex
elements, the fluxes can be associated with edges of the finite element mesh. At the same
time, interacting nodes of multilinear elements do not have to be connected by an edge. The
comeback of a flux-based representation makes it possible to apply prelimiting of antidif-
fusive fluxes, which contributes greatly to elimination of numerical ripples. Furthermore,
we analyze Zalesak’s limiter from the viewpoint of the postulated positivity criteria and
provide a new interpretation which enables us to derive a family of implicit FEM–FCT
schemes. The one based on the backward Euler time discretization is unconditionally stable
and positive. To our knowledge, no other implicit high-resolution finite element schemes are
available to date. The proposed algorithms preserve positivity, conserve mass, and provide
a sharp resolution of discontinuities as demonstrated by the numerical results for one- and
two-dimensional test problems.

2. STANDARD FEM–FCT PROCEDURE

Consider a generic time-dependent conservation law

∂u

∂t
+∇ · (vu) = ∇ · (ε∇u), (1)

whereu is the scalar quantity to be transported,v is an externally specified velocity field,
andε is a diffusion coefficient. This problem is notoriously difficult to treat numerically in
convection-dominated cases, i.e., whenε is small.
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Before embarking on the development of high-resolution finite element schemes using a
flux-based representation of (anti-) diffusive terms, let us recall the FEM–FCT procedure
due to Löhneret al. [24]. Building on an earlier paper by Parrott and Christie [27], it has
established the framework for implementation of Zalesak’s multidimensional limiter [36]
for finite element approximations on unstructured meshes. FEM–FCT employs constant
mass diffusion to construct the low-order scheme and delegates the role of antidiffusive
fluxes to element contributions. This constitutes a viable approach but, as we are about to
see, there is some room for improvement.

The process of flux correction starts with introducing strong artificial diffusion into a
high-order scheme, so as to enforce positivity of the numerical solution. According to
the Godunov theorem, this inevitably degrades the accuracy of the method to first order.
The crux of the FCT approach consists of reducing the error by adding compensating
antidiffusion in regions where the solution is smooth and where the Taylor series expansion
makes sense. The standard FEM–FCT procedure as proposed by L¨ohneret al. [24, 25]
involves six algorithmic steps, which can be summarized as follows:

1. Discretize the governing equation using an explicit high-order finite element method
with an appropriate stabilization of convective terms.

2. Perform mass lumping and insert a discrete diffusion operator into the high-order
scheme to construct a nonoscillatory low-order method.

3. Invoke the low-order scheme to compute a provisional solutionuL which is supposed
to preserve positivity.

4. Compute the antidiffusive element contributionsFe needed to recover the high accu-
racy of the original method.

5. Limit the antidiffusive element contributions so as to preclude the formation of new
and the enhancement of existing extrema.

6. Apply the corrected antidiffusive element contributions touL in order to obtain the
end-of-step solutionun+1.

The limiting strategy employed in step 5 is crucial to the performance of the method. It
amounts to multiplying the antidiffusive element contributions by certain correction factors
which vary between zero and unity. The final solutionun+1 is given by

un+1
i = uL

i +
∑

e

αeFe,i , 0≤ αe ≤ 1. (2)

Here Fe,i denotes the antidiffusive contribution of elemente to nodei . The control of
artificial dissipation is executed by monitoring the smoothness of the solution and adaptively
selecting the correction factors so as to switch between the diffusive low-order solution
(αe = 0) and the oscillatory high-order solution (αe = 1). The objective of the flux limiter
is to utilize the antidiffusive element contributions to the greatest extent possible without
generating nonphysical wiggles and violating the positivity constraint. The ins and outs of
the FEM–FCT algorithm are elucidated below.

High-Order Scheme

The governing equation discretized in space and time by an explicit high-order method
can be cast into the form

MC1u = R, (3)
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where MC denotes the consistent mass matrix,1u = un+1− un is the vector of nodal
increments, and the load vectorR comprises the convective and diffusive terms evaluated
at the old time level. L¨ohneret al. [24, 25] employed a two-step Taylor–Galerkin method
of the Lax–Wendroff type. However, any other explicit finite element scheme is feasible.

The solution to problem (3) clearly satisfies

ML1uH = R+ (ML − MC)1uH , 1uH = uH − un. (4)

Here the superscriptH refers to the high-order scheme, andML is the (row-sum) lumped
mass matrix, which is known to possess the conservation property [17]. The second term
in the right-hand side represents the antidiffusion built into the consistent mass matrix,
which makes it possible to obtain time-accurate solutions to transient problems albeit at the
expense of solving a (well-conditioned) linear system at each time step.

Low-Order Scheme

The accuracy offered by the consistent mass matrix has to be foregone by linear positivity-
preserving schemes. L¨ohneret al. [24] perform mass lumping and add explicit mass diffusion
to transform the high-order method into a low-order one,

ML1uL = R+ cd(MC − ML)u
n, 1uL = uL − un, (5)

where the superscriptL denotes the low-order scheme, andcd is some constant diffusion
coefficient. In particular, the choicecd = 1 yields [14, 31]

MLuL = MCun + R, (6)

which corresponds to the high-order method with mass lumping carried out only in the
left-hand side. This technique converts the one-dimensional Lax–Wendroff method into a
scheme which is stable and monotone for Courant numbers

|ν| ≤
√

2

3
.

This is more restrictive than the CFL condition for the classical upwind discretization.
Furthermore, no information is available about the behavior of the solution in more general
settings.

Adding sufficiently large constant diffusion to achieve monotonicity can be traced back
to the original SHASTA scheme of Boris and Book [6]. While this approach has been used
successfully by many authors, it may fail in some cases. Hence, the diffusion coefficientcd

and the time step1t should be chosen with care to obtain nonoscillatory results.

Antidiffusive Element Contributions

Note that if we subtract (5) from (4), the unwieldy termR vanishes. Furthermore,
1uH −1uL = uH − uL , so that the antidiffusive element contributions are given by

Fe = M−1
L

∣∣
e(M̂ L − M̂C)(cdûn +1ûH ). (7)
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The above notation is to be understood in the following sense. The local antidiffusion
operatorM̂L − M̂C is constructed forelementmass matrices and acts upon the function
values at the nodes of the element. This results in a vector with length equal to the number
of local degrees of freedom. Finally, its elements are divided by the corresponding diagonal
entries of theglobalmatrix ML to yield the antidiffusive element contributions.

Solution Bounds

The admissible solution range is determined by searching for local extrema in the low-
order solutionuL [6] and in the old solutionun [36]. Löhneret al. [24, 25] estimate the

solution boundsumin
max

by the following three-step algorithm:

1. Assembleu∗ from the nodal values ofuL or un, whichever is greater/smaller:

u∗i = max
min

{
uL

i , u
n
i

}
. (8)

2. Compute the maximum/minimum value ofu∗ within each element:

u∗∗e = max
min u∗i , i ∈ Ne. (9)

3. Pick the maximum/minimum value ofu∗∗ over all elements containing the node:

umin
i

max

= max
min u∗∗e , e∈ Ei . (10)

Thus, the unknown solutionun+1 at any node should be bounded by the maximum and
minimum values ofuL andun at the stencil associated with this node.

Screening the old solution along with the low-order one was proposed by Zalesak to
alleviate “peak clipping” inherent to the SHASTA scheme. This was shown to yield a
considerable improvement for a number of test configurations. However, this generalization
may produce numerical ripples for other problems, for instance, if the velocity field is not
divergence-free. In this case, physical extrema may decay with time (see Fig. 5), so that
adopting solution bounds from the previous time step would produce an overshoot. Thus,
it is prudent to setu∗ ≡ uL as in the original method of Boris and Book.

Limiting Strategy

The limiting process is based on Zalesak’s multidimensional flux correction algorithm
[36]. Six auxiliary quantities are defined for each node:

• P±i , the sum of all positive/negative antidiffusive element contributions to nodei :

P±i =
∑
e∈Ei

max
min {0, Fe,i }. (11)

• Q±i , the maximum/minimum admissible increment for nodei :

Q±i = umin
i

max

− uL
i . (12)
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• R±i , the least upper bound for the correction factors which guarantees no overshoot/
undershoot at nodei :

R±i =
{

min{1, Q±i /P±i }, if P±i 6= 0,

0, if P±i 6= 0.
(13)

The correction factors must be chosen so that the antidiffusive element contributions
acting in concert are unable to create nonphysical extrema. A suitable limiter is given by

αe = min
i∈Ne

{
R+i , if Fe,i ≥ 0,

R−i , if Fe,i < 0.
(14)

It is safe enough to guarantee that the constraintumin
i ≤ un+1

i ≤ umax
i is satisfied at all

nodes. Hence, the final solution will preserve positivity if the low-order one does. However,
numerical ripples of low amplitude can and do occur in some cases.

3. POSITIVITY AND LED CRITERIA

In order to derive an alternative FEM–FCT formulation applicable to implicit time step-
ping schemes, we need to introduce some mathematical tools. This section is devoted to the
analysis of properties which the discrete scheme must satisfy to maintain positivity of the
numerical solution. In subsequent sections we will consider the issue of mass conservation
and the structure of discrete diffusion operators, which are also of paramount importance
for the development of high-resolution finite element schemes.

Let the governing equation (1) be discretized on an arbitrary (possibly unstructured)
mesh. Assume that the semi-discrete problem can be represented in the form

dui

dt
=
∑

j

ci j u j ,
∑

j

ci j = 0, (15)

whereui are the nodal values, andci j are some coefficients depending on the procedure
employed for spatial discretization. In particular, the lumped-mass Galerkin finite element
discretization with basis functions which sum to unity at each point is seen to admit such
representation if the flow is incompressible (∇ · v = 0).

Since the coefficient matrix has zero row sum, the scheme can be rewritten as

dui

dt
=
∑
j 6=i

ci j (u j − ui ). (16)

Furthermore, suppose that all coefficients are nonnegative:ci j ≥ 0, j 6= i . Then such a
scheme is stable in theL∞-norm. Indeed, ifui is a maximum, thenu j − ui ≤ 0,∀ j , so that
dui
dt ≤ 0. Hence, a maximum cannot increase, and similarly a minimum cannot decrease.

As a rule, coefficient matrices are sparse, so thatci j = 0 unlessi and j are adjacent nodes.
Arguing as above, one can show that in this case alocal maximum cannot increase, and a
local minimum cannot decrease. Schemes which possess this property will be called local
extremum diminishing (LED).

The LED criterion was introduced by Jameson [18, 19] as a convenient tool for the
design of high-resolution schemes on unstructured meshes. It implies positivity, since if the
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solution is positive everywhere, then so is the global minimum which cannot decrease by
definition. Hence, the LED property provides an effective mechanism for preventing the
birth and growth of nonphysical oscillations. In the one-dimensional case, it guarantees that
the total variation of the solution defined as

TV(u) =
∫ +∞
−∞

∣∣∣∣∂u

∂x

∣∣∣∣ dx (17)

does not increase. For the sake of simplicity, consider homogeneous Dirichlet boundary
conditions at both endpoints. Then the total variation is given by

TV(u) = 2
(∑

maxu−
∑

minu
)
. (18)

Thus, a one-dimensional LED scheme is necessarily total variation diminishing (TVD).
This is a highly advantageous property, which has formed the basis for the development of
a whole class of nonoscillatory schemes. The advantage of the LED principle as compared
to TVD concepts is its applicability to multidimensional problems on both structured and
unstructured meshes.

Recall that Eqs. (15) and (16) correspond to a semi-discrete convection–diffusion prob-
lem. Let us now investigate the conditions under which a LED scheme will remain positive
after the time discretization. If a standard one-stepθ -scheme is employed, the fully dis-
cretized equation reads

un+1
i − un

i

1t
= θ

∑
j 6=i

ci j
(
un+1

j − un+1
i

)+ (1− θ)∑
j 6=i

ci j
(
un

j − un
i

)
, 0≤ θ ≤ 1. (19)

The choice of parameterθ specifies the type of time stepping. The extreme casesθ = 0
andθ = 1 define the well-known forward and backward Euler methods. Both of them are
first-order accurate with respect to the time step1t . The method corresponding toθ = 1

2
is known as the Crank–Nicolson scheme, which is second-order accurate. Furthermore, the
following theorem holds:

POSITIVITY THEOREM 1. A local extremum diminishing scheme discretized in time by
the backward Euler method is unconditionally positive. Other time stepping schemes(0≤
θ <1) preserve positivity under an appropriate CFL-like condition.

Proof. Let us first prove the unconditional positivity of the backward Euler method. In
this case, the time discretization is fully implicit, so that the last term in the right-hand side
of Eq. (19) vanishes. Assume that the discrete solutionun+1 is negative at some nodes and
denote byk the node at which the global minimum is attained. The new solution at this
node satisfies

un+1
k = un

k +1t
∑
j 6=k

ck j
(
un+1

j − un+1
k

)
. (20)

By inductive assumption, the old solutionun must be nonnegative everywhere. The co-
efficients ckj are also nonnegative due to the LED property, soun+1

k < 0 implies that
un+1

j − un+1
k < 0 for somej . However, this leads to a contradiction, sinceun+1

k was chosen
to be the global minimum. Hence, the positivity ofun is inherited byun+1.
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Now let us tackleθ < 1. The above considerations for the implicit term show that the
discrete scheme (19) will preserve positivity if the explicit term satisfies the inequality

un
i +1t (1− θ)

∑
j 6=i

ci j
(
un

j − un
i

) ≥ 0 ∀i . (21)

As long asun
i ≥ 0 andci j ≥ 0, it is sufficient to require that

1+1t (1− θ)min
i

ci i ≥ 0, (22)

wherecii = −
∑

j 6=i ci j are the diagonal elements of the original coefficient matrix defined
by Eq. (15). This condition provides the desired positivity criterion, which can be used for
the time step control.

If the discrete scheme is not local extremum diminishing (e.g., due to compressibility or
the presence of reactive terms), then a weaker positivity criterion should be applied. It is
based on the concept of anM-matrixas elucidated below.

DEFINITION. A nonsingular discrete operatorA ∈ Rn×n is called an M-matrix ifai j ≤ 0
for i 6= j and all the entries ofA−1 are nonnegative.

If A is strictly diagonally dominant andaii > 0, whileai j ≤ 0 for i 6= j , thenA is an M-
matrix (see, e.g., [29]). Note that for M-matricesAx ≥ 0 implies thatx ≥ 0. This motivates
the following generalization of the positivity theorem:

POSITIVITY THEOREM 2. Let the numerical scheme be represented in abstract matrix
operator form as

Lun+1 = Run.

A sufficient condition for such scheme to preserve positivity is that L be an M-matrix and
all entries of R be nonnegative(R≥ 0).

Proof. The inverse ofL is nonnegative due to the M-matrix property. Thus,un+1 =
L−1Run ≥ 0, as long asun ≥ 0.

Remark 1. Conditions of the Theorem are sufficient (but not necessary) to guarantee
that the numerical solution satisfies the discrete maximum principle.

Remark 2. It seems expedient to require that the steady-state counterpart ofL be an
M-matrix as well. Otherwise, nonphysical ripples might emerge even though the solution
remains positive.

Remark 3. As before, the time step can affect the sign of matrix entries, so that the
conditionR≥ 0 yields a CFL-like upper bound for explicit schemes.

The above positivity criteria lay the groundwork for the construction of high-resolution
numerical schemes. The desired properties of discrete operators can be realized by the
introduction of artificial diffusion or by the use of upwind biasing. However, it was shown
by Godunov that no linear discretization method of order higher than first can guarantee
monotonicity of the numerical solution. In practice, this means that the results produced
by such schemes are overly diffusive. Superior approximations to convection-dominated
transport problems can be obtained only by means of sophisticated nonlinear methods with
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coefficients depending on the solution. The discretization process is typically controlled
by flux or slope limiters which adaptively switch between high- and low-order methods.
A high-order approximation is used in regions where the solution is smooth, whereas the
order is reduced in the vicinity of discontinuities so as to dampen nonphysical undershoots
and overshoots. We have already seen how this can be accomplished in the framework of
the FEM–FCT methodology.

4. MASS CONSERVATION

Conservation of mass is crucial to the design of numerical methods for the bulk of transport
problems [17]. In particular, a failure of the algorithm to conserve mass may cause shocks
to propagate with wrong speed if nonlinear conservation laws (e.g., the inviscid Burgers
equation) are considered. Nonconservative numerical schemes can produce unacceptable
results also in many other cases, so they should be typically avoided.

The conventional Galerkin finite element discretization conserves mass in an integral
sense. Indeed, the weak formulation of Eq. (1) reads∫

Ä

[
∂u

∂t
+∇ · (vu)−∇ · (ε∇u)

]
w dx = 0, ∀w. (23)

The associated semi-discrete system is obtained by using an approximation ofu in a suitable
finite-dimensional space and applying the basis functionsϕi in lieu of w. For customary
finite elements, we have

∑
i ϕi ≡ 1, so that the sum of all equations yields the original

conservation law in the integral form

d

dt

∫
Ä

u dx = −
∫

S
(vu− ε∇u) · n ds, (24)

wheren is the unit outward normal. It can be seen that the total mass inÄ changes only
due to convective and diffusive fluxes through the boundary.

Finite volume and discontinuous Galerkin methods apply formulation (24) directly to
each element of the triangulation, so that mass conservation is enforced not only globally but
also locally. Flux correction for such discontinuous approximations is fairly straightforward.
The objective of this paper is to extend the available FCT machinery to continuous (linear
and multilinear) finite elements.

While the standard Galerkin discretization is conservative, this favorable property may
be lost in the quest to get rid of nonphysical oscillations which contaminate numerical
solutions to convection-dominated problems. For instance, the most straightforward and
inexpensive algorithm “inspired” by the FCT procedure would be:

1. Solve the transport equation by a high-order scheme prone to oscillate.
2. Estimate the upper and lower solution bounds using somea priori knowledge and/or

numerical results produced by a monotone low-order scheme.
3. “Trim” the high-order solution so as to make it stay within the bounds.

Unfortunately, this approach is not to be recommended for an obvious reason: it doesn’t
conserve mass. This is a quite instructive example, since any other nonconservative limiting
technique is equally unreliable but almost certainly more expensive. If the above algorithm
is to be employed, it should be complemented by an extra postproccessing step for the
recovery of the lost mass [21].
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5. STRUCTURE OF DIFFUSION OPERATORS

It is well known that the Galerkin discretization is unstable for pure convection problems.
Therefore, the discrete scheme must contain enough dissipation (of physical or numerical
origin) to damp out the instabilities. Furthermore, properly tuned artificial diffusion is
the key tool for rendering a numerical scheme positive and local extremum diminishing.
The structure of the involved diffusive terms is of primary importance for subsequent
considerations, so it is worthwhile to study it in some detail. The most common dis-
crete diffusion operators encountered in finite element schemes for transport problems
are:

• The discrete Laplacian operator

d1i j =
∫
Ä

∇ϕi · ∇ϕ j dx,

which typically results from the discretization of physical diffusion terms. It is also referred
to as the “stiffness matrix.”
• The streamline diffusion operator

ds
i j =

∫
Ä

v · ∇ϕi v · ∇ϕ j dx,

which represents artificial diffusion in the streamline direction added in order to stabi-
lize the convective terms. It can be justified in different ways. The concept of streamline
diffusion was introduced by Brooks and Hughes [7] and employed within a consistent
Petrov–Galerkin formulation. A similar approach was followed by Johnson [20] and his
collaborators. The least-squares formulation [8] also gives rise to a streamline diffusion
operator of the form above. Furthermore, streamline diffusion terms can be attributed to
higher-order temporal approximations afforded by Taylor–Galerkin methods [13].
• The mass diffusion operator

dm
i j =

∫
Ä

ϕi (ϕ j − δi j ) dx,

which is given by the difference between the consistent mass matrixMC and its diagonal
counterpartML obtained by the row-sum mass lumping. As we have seen, mass diffusion
can be used for the construction of low-order finite element schemes to be combined with
high-order ones in the FCT framework.

In spite of their different nature and appearance, discrete diffusion operators possess
some common features. The most important ones are the symmetry

di j = dji (25)

and zero row/column sums ∑
j

di j =
∑

i

di j = 0 (26)
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(for basis functions satisfying
∑

i ϕi ≡ 1). A tensorD having these properties can be
treated as a generalized diffusion operator and constructed so as to provide an appropriate
modification of the numerical scheme.

The application of a discrete diffusion operator to the vector of nodal values yields

(Du)i =
∑

j

di j u j =
∑
j 6=i

di j (u j − ui ) (27)

due to the zero row sum property. Let us define the fluxfi j from node j into nodei as
fi j = di j (u j − ui ). Then

(Du)i =
∑
j 6=i

fi j , f j i = − fi j . (28)

Hence, diffusive terms can be decomposed into a sum of numerical fluxes similar to those
encountered in conservative finite difference schemes. Each node receives contributions
from all nodes sharing an element with it. Mass conservation is guaranteed, since the fluxes
representing mass transfer from one node into another are equal in magnitude and opposite
in sign. Consequently, it is safe to limit such fluxes, and this can be done in an essentially
one-dimensional fashion.

6. NEW FEM–FCT PROCEDURE

Now we are in a position to derive a flux-based FCT formulation as an alternative to
the element-based approach of L¨ohneret al. [24, 25] The representation of antidiffusion
in terms of element contributions restricts the choice of artificial diffusion operators and
prevents the use of some inherently one-dimensional flux correction tools. The flux-based
decomposition of (anti-) diffusive terms introduced above appears to be much more flexible
and efficient. High-resolution finite element schemes of this type were proposed in [14, 31,
32]. The structure of the (constant) mass diffusion operator was utilized to develop artificial
viscosity, FCT, and TVD-like methods building on the concept of modulated dissipation. We
will follow a similar approach while using rigorous positivity criteria to develop both explicit
and implicit FCT schemes. The main ideas behind the new methodology are presented below.

Low-Order Scheme

The quality of the low-order method is of great importance for the overall performance
of an FCT algorithm. If the low-order solution ceases to be positive, oscillatory results will
certainly ensue. Furthermore, a perfect low-order scheme should contain just as much arti-
ficial diffusion as is necessary to enforce positivity. This would facilitate the task of limiting
and preclude excessive smearing. For finite difference or finite volume discretizations, the
best candidate for the low-order scheme is clearly the upwind method. An example of a
finite element FCT algorithm using upwind as the low-order scheme can be found in the
paper of Parrott and Christie [27]. However, upwinding is rather cumbersome and unnatural
in the finite element context, which has led L¨ohneret al. [24] to replace it by mass diffusion
with a constant coefficient.

Adding the same amount of diffusion everywhere is computationally efficient, but the
resulting method is not optimal as far as accuracy is concerned. If the free parameter chosen
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is too large, the scheme is overdiffusive and the stability range is reduced. At the same
time, insufficient artificial diffusion may lead to the arising of spurious extrema which are
transmitted to the final solution. These shortcomings were recognized by Georghiouet al.
[16], who attempted to design variable “optimal” diffusion coefficients depending on the
local Courant number as in the upwind finite difference method. This seems to be a poor
remedy, since such algorithm can be expected to work well only on very regular meshes and
may fail to preserve positivity. Another attempt to improve on L¨ohner’s method (without
referring to the original paper) was recently published in [33]. In contrast to [16], a constant
artificial diffusion coefficient was used to enforce the M-matrix property. In what follows,
we present a new approach, which does reconcile the conflicting demands for accuracy and
positivity of the low-order scheme.

If the flow is incompressible, Eq. (1) can be written in the nonconservative form:

∂u

∂t
+ v · ∇u = ∇ · (ε∇u). (29)

Let the spatial discretization be performed by the standard Galerkin finite element method.
This yields a semi-discrete problem of the form

MC
du

dt
= K H u, (30)

whereMC is the consistent mass matrix, andK H is the discrete transport operator, which
has zero row sum, so that

(K H u)i =
∑
j 6=i

kH
i j (u j − ui ). (31)

In general, the Galerkin scheme (30) is not local extremum diminishing, which manifests
itself in the tendency to oscillate (especially in convection-dominated cases). However, the
LED criteria at our disposal reveal what measures need to be taken in order to obtain a
usable low-order method.

First, we employ mass lumping to remove the implicit antidiffusion intrinsic to the
consistent mass matrix. The resulting scheme can be cast into the form (16) and would
possess the LED property if all coefficientskH

i j , j 6= i were nonnegative. This suggests the
rule for the construction of the low-order transport operator,

K L = K H + D, (32)

whereD is a tensor of modulated dissipation. It is designed so as to eliminate all negative
off-diagonal entries of the high-order operator:

dii = −
∑
k 6=i

dik, di j = dji = max
{

0,−kH
i j ,−kH

ji

}
, ∀ i < j . (33)

In essence, this corresponds to applying one-dimensional diffusion operators associated
with the (fictitious) segments connecting the adjacent nodes. The global matrix assembly is
performed in a standard way. It is easy to verify thatD has zero row and column sums, and
thus enjoys all properties of generalized diffusion operators including mass conservation.
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Note that if physical diffusion is strong enough, so that the coefficients are nonnegative
from the outset, then no artificial diffusion is added. Hence, in diffusion-dominated cases
the matricesK H andK L are identical.

If the velocity field in Eq. (1) is not divergence-free, a local accumulation of the conserved
quantity can occur. Therefore, the formation of physical extrema must be reckoned with.
Nevertheless, the left-hand side operator will remain an M-matrix if the low-order operator
K L is constructed as above. According to the second theorem, positivity will be preserved
under a proper CFL-like condition. Depending on the sign of∇ · v, admissible time steps
may be greater or smaller than those for the incompressible case. As a matter of fact, the
fully implicit scheme may become conditionally positive for∇ · v¿ 0. However, this is
very unlikely to happen for any practical flows of interest.

In any event, the semi-discrete low-order scheme reads

ML
du

dt
= (K H + D)u = K Lu, (34)

that is

mi
dui

dt
=
∑

j

kH
i j u j +

∑
j 6=i

di j (u j − ui ) =
∑

j

kL
i j u j , (35)

wheremi denote the diagonal entries of the lumped mass matrix. It is notable that the
difference between the high- and low-order discretization of the transport terms admits
decomposition into fluxes.

According to the first positivity theorem, the backward Euler time discretization of a LED
scheme is unconditionally positive, while other time stepping schemes preserve positivity
as long as

1t ≤ 1

1− θ min
i

{−mi
/

kL
ii

∣∣ kL
ii < 0

}
. (36)

This positivity condition gives a practical estimate of the maximum admissible time step.
It is influenced by the degree of implicitnessθ and by the ratiomi /kL

ii . Hence, excessive
artificial diffusion not only degrades the accuracy of the method but also requires taking
smaller time steps. This is exemplified by the scheme (6), whereby the Lax–Wendroff
method was augmented by mass diffusion ofconstantmagnitude.

EXAMPLE. Let us illustrate the construction of low-order operators by a one-dimensional
example. Consider the pure convection equation

∂u

∂t
+ v ∂u

∂x
= 0 (37)

discretized on a uniform mesh of linear elements by the Galerkin method. For the sake of
simplicity, assume that the velocityv is constant and positive. The local element matrices
have the form

M̂ L = 1x

2

[
1 0
0 1

]
, K̂ H = v

2

[
1 −1
1 −1

]
. (38)
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After the global matrix assembly, the central difference approximation of the convective
term is recovered at interior nodes:

dui

dt
= −vui+1− ui−1

21x
. (39)

The minimum amount of artificial dissipation sufficient to enforce positivity is propor-
tional tod̂12 = v/2. The corresponding discrete diffusion operator restricted to one element
is given by

D̂ = v

2

[−1 1
1 −1

]
⇒ K̂ L = v

[
0 0
1 −1

]
. (40)

The resulting low-order scheme is seen to be equivalent to the upwind finite difference
method in the interior:

dui

dt
= −vui − ui−1

1x
. (41)

Obviously, this is the least diffusive linear scheme which preserves positivity. The associated
CFL condition reads

v
1t

1x
≤ 1

1− θ . (42)

In particular, the fully explicit scheme is positive for Courant numbers up to unity.
To summarize, our technique for the construction of positive low-order operators reduces

to standard upwinding for pure convection in one dimension and, unlike thead hocalgorithm
of Georghiouet al. [16], it is applicable to arbitrary meshes and multidimensional problems.
Moreover, the resulting scheme is less diffusive than the upwind method in the presence
of physical diffusion. A distinct advantage of the proposed approach is that the artificial
diffusion operator is assembled at the discrete level and depends only on the location and
magnitude of negative off-diagonal entries. The origin of discrete transport operators does
not matter, so that finite element matrices resulting from the discretization of 1D, 2D, and
3D problems can be treated in exactly the same way.

Flux-Based FEM–FCT Formulation

Our next step is to reformulate the FEM–FCT procedure in terms of internodal fluxes
and to extend it to implicit time stepping schemes, so as to eliminate or alleviate severe
time step restrictions inherent to explicit methods. Of primary interest are the backward
Euler and the Crank–Nicolson scheme. Both of them are unconditonally stable and can
be used as a high-order method in conjunction with the Galerkin spatial discretization. No
extra stabilization of convective terms is required in this case. At the same time, the fully
explicit Galerkin method needs to be stabilized. A classical way to accomplish this is to add
a proper amount of artificial diffusion in the streamline direction. In this paper, we use the
Lax–Wendroff method, whereby the streamline diffusion corresponds to the second-order
term in the Taylor series expansion. An investigation of Lax–Wendroff schemes by means
of the modified equation method reveals that the introduced dissipation just counterbalances
the intrinsic negative diffusion which renders the explicit Euler-Galerkin scheme unstable
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for pure convection problems. For an in-depth study of Lax–Wendroff and higher order
Taylor–Galerkin methods, the reader is referred to [13].

The high-order transport operator can be transformed into a low-order one as explained
above. The resulting methods discretized in time by the standardθ -scheme are related by
the formula

(ML − θ1t K L)uH = (ML + (1− θ)1t K L)un + F(uH , un), (43)

where the antidiffusion responsible for high spatial accuracy is given by

F(uH , un) = −(MC − ML)1uH −1t (K L − K H )[θuH + (1− θ)un] +1t Sun. (44)

HereSstands for the streamline diffusion operator which is present only in the fully explicit
scheme. If the antidiffusive termF(uH , un) is omitted, then the positive low-order scheme
is recovered, whereas retaining it yields the original high-order method.

It can readily be seen that all the matrices in (44) represent discrete (anti-) diffusion
operators and thereby lend themselves to decomposition into fluxes

fi j = −mi j
(
1uH

j −1uH
i

)−1t di j
[
θ
(
uH

j − uH
i

)+ (1− θ)(un
j − un

i

)]
+1t si j

(
un

j − un
i

)
, f j i = − fi j , i < j . (45)

These raw antidiffusive fluxes offset the errors induced by mass lumping, “upwinding,”
and first-order time discretization (for the explicit scheme). Coefficientsmi j , di j , andsi j

denote the entries of the consistent mass matrix, artificial diffusion, and streamline diffusion
operators, respectively.

In light of the above, the flux-corrected version of (43) can be written in the form

mi u
n+1
i − θ1t

∑
j

kL
i j u

n+1
j = mi ũi +

∑
j 6=i

αi j fi j , α j i = αi j , (46)

whereαi j denote the correction factors (to be defined below), whileũ represents the
positivity-preserving solution to the explicit subproblem

mi ũi = mi u
n
i + (1− θ)1t

∑
j

kL
i j u

n
j . (47)

In essence,̃u corresponds to an intermediate solution computed at the time instanttn+1−θ

by the explicit low-order scheme. It reduces toun for the backward Euler method (θ = 1)
and touL for the forward Euler method (θ = 0).

The newly introduced family of FCT schemes distinguishes itself in that it is applicable
to explicit and implicit time discretizations alike. The fully explicit scheme is consistent
with the standard FCT methodology. Note that implicit schemes require solvingtwo non-
symmetric linear systems per time step: one for the high-order solution (which is needed to
compute the antidiffusive fluxes) and one for the final solution. Nevertheless, implicit meth-
ods are typically more efficient than explicit ones because larger time steps can be taken. If
iterative solvers are employed, the high-order solution provides a reasonable initial guess
for the final solution.
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It is obvious that the success of the FCT algorithm depends on the positivity of the
provisional solutionũ and on the choice of correction factorsαi j . For ũ to be positive,
the time step must satisfy the CFL-like condition (36) unless the scheme is fully implicit
(ũ = un). As long as the left-hand side operator is an M-matrix, our positivity theorems
guarantee that the scheme (46) can be rendered positive by tuning the correction factors.
The flux limiter is a key element of the FEM-FCT procedure, which needs to be adapted to
the new formulation. Below we work out a unified limiting strategy for explicit and implicit
schemes.

Limiting Strategy

Let us start with an optional but important component of the FCT limiter. It turns out that
explicit FCT schemes can benefit from canceling all antidiffusive fluxes directed down the
gradient ofũ:

fi j := 0, if fi j (ũi − ũ j ) < 0. (48)

This test should be appliedbeforethe flux correction step. Its purpose is to ensure that the
flux does not smooth the low-order solution. To put it another way, an antidiffusive flux
is not allowed to be diffusive. When this happens, small-scale numerical ripples can be
produced even though the solution remains positive. Hence, the limiter is positivity- but not
monotonicity-preserving [12].

The prelimiting of antidiffusive fluxes can be traced back to the celebrated SHASTA
scheme. Zalesak also mentioned this approach in passing but did not promote its regular
use. He argued that the majority of antidiffusive fluxes act of steepen the gradient, while
the effect of (48) is minimal and cosmetic in nature. This remark has discouraged the use
of prelimiting in FCT algorithms based on Zalesak’s multidimensional limiter. Apparently,
this is not the sole reason why this step is missing in the FEM–FCT procedure of L¨ohner
et al. [24, 25] The replacement of antidiffusive fluxes by element contributions makes the
prelimiting impossible to carry out for multidimensional problems. Only the restitution of
a flux-based formulation enables us to apply this technique in the finite element context.

DeVore [12] has rediscovered the preprocessing of antidiffusive fluxes as a way to achieve
monotonicity and demonstrated that it can lead to a dramatic qualitative improvement of
dynamic simulation results. Even for simple test problems with discontinuous solutions,
remarkable “esthetic” improvements are observed (see the numerical examples below).
Therefore, the prelimiting step is to be included in explicit FCT algorithms. In our experi-
ence, it remains relevant also for the implicit schemes introduced in this paper.

Let us proceed to the algorithm for selection of correction factors. It is largely equivalent
to Zalesak’s limiter but is derived and interpreted in a quite different way. As before, we
denote byumin

i

max
the maximum and minimum solution values at the stencilSi which consists

of the nodei and its nearest neighbors:

umin
i

max
= max

min ũ j , j ∈ Si . (49)

It should be borne in mind that the positivity-preserving auxiliary solutionũ = uL(tn+1−θ )
depends on the concrete time stepping scheme. The old solutionun is no longer used in the
computation of local extrema.
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In accordance with the FCT theory, all antidiffusive fluxes which try to accentuate a local
maximum or minimum must be completely canceled:

αi j = 0, if ũi = umax
i , fi j > 0 or ũi = umin

i , fi j < 0. (50)

If this applies to all fluxes into the nodei , we are done. Otherwise, the remaining fluxes
have to be limited so as to comply with the positivity constraint. It is noteworthy that the
right-hand side of our scheme (46) admits the representation

RHS= mi ũi +
∑
j 6=i

αi j fi j = mi ũi + ci Qi , ci =
∑

j 6=i αi j fi j

Qi
, (51)

where the multiplierQi is chosen to be

Qi =


Q+i = umax

i − ũi , if
∑

j 6=i αi j fi j > 0,

Q−i = umin
i − ũi , if

∑
j 6=i αi j fi j < 0,

1, if
∑

j 6=i αi j fi j = 0.

(52)

By virtue of (50), we haveQi 6= 0, so that no division by zero takes place. Furthermore, the
coefficient,ci is always nonnegative. Let the local extremumumin

i

max
be attained at a nodek

adjacent to the nodei . Then the antidiffusive term exhibits a LED structure, and we obtain

RHS= mi ũi + ci (ũk − ũi ) = (mi − ci )ũi + ci ũk, ci ≥ 0. (53)

According to the positivity theorems, the FEM–FCT scheme (46) will preserve positivity
provided thatmi ≥ ci . This important observation frames a general rule for the selection of
correction factorsαi j .

It remains to show that Zalesak’s limiter does possess the desired properties. Let us restate
it for our flux-based formulation. The quantitiesP±i andR±i are redefined as

P±i =
1

mi

∑
j 6=i

max
min {0, fi j }, R±i =

{
min{1, Q±i /P±i }, if P±i 6= 0,

0, if P±i = 0.
(54)

Since now the nodes exchange mass on a bilateral basis, the flux limiter is given by

αi j =
{

min{R+i , R−j } if fi j ≥ 0,

min{R+j , R−i } if fi j < 0.
(55)

It is independent of the number of spatial dimensions and can be easily implemented as a
“black-box” routine which computes the correction factors given an array of antidiffusive
fluxes for each pair of neighboring nodes.

The condition (50) is automatically satisfied, sinceQ±i = 0 spellsR±i = 0 andαi j = 0.
Hence, any enhancement of local extrema is neutralized by the limiter. Furthermore, the
following estimate holds:∑

j 6=i

αi j fi j ≤
∑
j 6=i

αi j max{0, fi j } ≤ mi R
+
i P+i ≤ mi Q

+
i . (56)
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In much the same way, it can be verified that∑
j 6=i

αi j fi j ≥
∑
j 6=i

αi j min{0, fi j } ≥ mi R
−
i P−i ≥ mi Q

−
i . (57)

This proves that the corrected antidiffusive fluxes satisfy the constraintmi ≥ ci .

Defect Correction

Many practical applications are described bynonlinear conservation laws. A typical
example is given by the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, (58)

which constitutes a one-dimensional prototype of the Euler and Navier–Stokes equations.
In this case, the matricesK H andK L depend on the unknown solution, so that additional
outer iterations are necessary for implicit schemes. It will be noted that the linearization of
the problem using a constant extrapolation in time can entail a loss of mass and alter the
shock speed.

The simplest iterative treatment of nonlinearities is afforded by a fixed point defect
correction method. If we consider an abstract nonlinear system of the form

A(u)u = b, (59)

then the basic nonlinear iteration can be formulated as

u(l+1) = u(l ) − [C(u(l ))]−1(
A
(
u(l )
)
u(l ) − b

)
, (60)

where l is the outer iteration counter, andC is a suitably chosen “preconditioner” (an
approximate Frech´et derivative) which should be easy to invert. The iteration process is
terminated when the residual is small enough orl exceeds a given limit. As a rule, the
“inversion” of C is also performed by some iterative (e.g., multigrid) procedure. Hence,
a certain number of inner iterations per cycle is required. It is worth mentioning that the
problem does not have to be solved very accurately at each outer iteration. A moderate
improvement of the residual (1–2 digits) is sufficient to obtain a good overall accuracy.

For a nonlinear problem of the form (43), it is reasonable to use the low-order operator
as the preconditioner:

C
(
u(l )
) = ML − θ1t K L

(
u(l )
)
.

This yields an iterative FEM–FCT algorithm, whereby the approximate solution and the
transport operator are successively updated as follows:(

ML − θ1t K L
(
u(l )
))

u(l+1) = (ML + (1− θ)1t K L(un))un + F
(
u(l ), un

)
. (61)

The last term is composed from the (limited) antidiffusive fluxes. Flux correction can be
performed after each outer iteration or just once after the high-order solution has converged.
In either case, positivity of the numerical solution is secured.



544 KUZMIN AND TUREK

Even if the problem at hand is linear, it might be worthwhile to equip implicit schemes
with an outer defect correction loop. At large time steps, the matrix of the high-order
system degenerates, so that an iterative method may fail to converge. This can be rectified
by resorting to defect correction, which approximates the original matrix by a well-behaved
preconditioner. The M-matrix properties of the low-order operator make it particularly
amenable to iterative solution, which results in a very robust solver.

Treatment of Outflow Boundaries

Let us make some final remarks regarding the treatment of outflow boundaries. It turns out
that FCT schemes can malfunction when applied to problems with smooth solutions (i.e.,
in situations where flux correction is actually redundant). This major deficiency manifests
itself in spurious ripples emanating from the outflow boundary and propagating into the
computational domain. A typical example will be presented below. The wiggles can be
cured by (local) mesh refinement, but it is necessary to understand their origins in order
to find a better remedy. It goes without saying that a failure to cope with smooth solutions
seriously compromises the practical utility of the method even if it provides an excellent
resolution of shocks and contact discontinuities.

The pathological behavior of the FCT algorithm apparently occurs due to the lack of
proper boundary adjustment. Similar problems are observed when Petrov–Galerkin methods
are applied without boundary correction for the streamline diffusion terms [5]. At the same
time, consistent Lax–Wendroff and Taylor–Galerkin schemes do incorporate the necessary
modification. It is given by the surface integral which arises naturally from integration by
parts of the second-order term [13]. Inclusion of similar integrals into the Galerkin least
squares formulation also yields the desired effect [15].

In most cases, streamline diffusion methods without boundary modification still produce
acceptable solutions. However, boundary anomalies can be considerably aggravated by flux
correction. This can be attributed to a nonphysical natural boundary condition implied by
the low-order scheme. For simplicity, consider a one-dimensional pure convection problem
and recall that in this case the boundary condition is to be prescribed only on the inflow
boundary, i.e., at the endpoint where the velocity is directed into the domain. The positivity
of the low-order scheme is enforced by adding strong discrete diffusion to the underlying
high-order scheme. This is equivalent to solving a parabolic convection–diffusion equation
with homogeneousNeumann boundary condition at the outlet. Hence, the low-order solution
will exhibit a kink whenever the exact solution has a nonvanishing derivative at the outflow
boundary. At the same time, high-order methods handle smooth profiles with ease and
provide a much better approximation to the exact solution at the boundary. This discrepancy
seems to be the reason why FCT schemes sometimes produce saw-like profiles given smooth
initial data.

In fact, the homogeneous Neumann boundary condition is a direct consequence of the
conservation property of discrete diffusion operators. If we add artificial dissipation while
requiring strict mass conservation, the numerical solution will be forced to bend so as
to prevent any nonphysical diffusive flux through the boundary. Hence, it is worthwhile
to reconsider the concept of mass conservation and endorse the outflow of mass due to
numericaldiffusion. The aforementioned boundary integrals represent in essence numerical
fluxes which cater for a consistent boundary treatment.

A feasible strategy motivated by the above considerations is to construct the discrete
low-order transport operator so as to leave the rows corresponding to outflow boundary
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nodes unchanged. To this end, we can replace formula (33) by

dii = −
∑
k6 =i

dik, di j = max
{

0,−kH
i j

}
, dji = 0 (62)

if i is an interior node andj is a node on the outflow boundary. Note that the symmetry
of antidiffusive fluxes fi j = − f j i is lost for boundary nodes, so that the limiter and the
assembly process have to be modified appropriately.

For our one-dimensional example, we obtain

D̂ = v

2

[−1 1
0 0

]
⇒ K̂ L = v

2

[
0 0
1 −1

]
, (63)

which is equivalent to adding the missing boundary integral. It is noteworthy that all off-
diagonal entries of the low-order transport operator are still nonnegative, so that the positivity
of the low-order solution is guaranteed. This will also be the case, e.g., for bilinear elements
provided the velocity and mesh size do not exhibit abrupt changes in proximity to the outflow
boundary. A proof for the case of a uniform mesh and a constant velocity is available. It is
quite straightforward and will not be presented here.

Another simple way to get rid of ripples is to abstain from adding any artificial diffusion
in the boundary layer, i.e., setdi j = dji = 0 if one of the nodes belongs to the outflow
boundary, while the other one resides in the interior. This approach preserves the symmetry
of fi j and is probably to be preferred because of its lower complexity. Boundary adjustment
should not be applied to convection–diffusion problems with Dirichlet boundary conditions
prescribed at the outlet.

7. NUMERICAL EXAMPLES

Let us substantiate the new FEM–FCT methodology by a number of one- and two-
dimensional examples. The Lax–Wendroff and Crank–Nicolson schemes are second-order
accurate in time and produce virtually identical numerical results. Hence, it suffices to exam-
ine the behavior of the Lax–Wendroff (LW/FCT) and backward Euler (BE/FCT) methods.
Unless otherwise indicated, the 1D solutions were obtained on a uniform mesh of 100 linear
elements, whereas a Cartesian mesh of 128× 128 bilinear elements was employed for the
2D examples. The time step was chosen rather small in most cases in order to reduce the
temporal error for the first-order accurate backward Euler method. However, some solutions
for Courant numbers exceeding unity are also presented.

Convection of a Step Function

As a classical one-dimensional test problem, consider pure convection of a discontinuous
step function with unit velocity. The time step1t is set equal to 10−3, which corresponds
to the Courant numberν = 0.1. The first method to be evaluated is the explicit FEM–FCT
scheme based on the Lax–Wendroff time stepping. The numerical results att = 0.5 are
depicted in Fig. 1. Here and below, the dash-dotted line stands for the initial data, and the
dotted line designates the analytical solution.

As expected, the high-order LWFE method entails undershoots and overshoots of con-
siderable amplitude, while the low-order solution is monotone but corrupted by excessive
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FIG. 1. Convection of a step function. Lax–Wendroff/FCT scheme,t = 0.5.

numerical diffusion. Flux correction brings about a dramatic improvement, but the solution
exhibits some imperfections if the prelimiting step is omitted. By far the most accurate
results are produced by the FEM–FCT method equipped with prelimiting. This serves as
an evidence that the preprocessing of antidiffusive fluxes is a valuable complement to the
FCT procedure.

Let us compare these results with those obtained by the fully implicit BE/FCT scheme
(see Fig. 2). Even though the Courant number is rather small, the backward Euler method is
seen to be diffusive because of the first-order time discretization. At the same time, it is not as
oscillatory as the LWFE scheme. The implicit “upwind” method yields essentially the same
results as its explicit counterpart. It is evident that the implicit FEM–FCT algorithm also does
a very good job in combining the advantages of high- and low-order schemes. The nonphys-
ical oscillations are filtered out completely, while the slope of the profile remains the same.
As the time step is refined, the accuracy approaches that of the explicit LW/FCT scheme.

Inviscid Burgers Equation

The inviscid Burgers equation (58) is a standard model problem for nonlinear convection
in one dimension. It is frequently employed to assess the ability of numerical methods to
deal with formation and propagation of shocks. Let us start with a discontinuous initial
profile and simulate its evolution up to the timet = 0.4. The numerical solutions produced
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FIG. 2. Convection of a step function. Backward Euler/FCT scheme,t = 0.5.

by the FEM–FCT schemes are displayed in Fig. 3. The nonlinearity was treated by the fixed
point defect correction method as described above.

In turns out that the effect of the prelimiting step is not so pronounced in this setting.
Furthermore, the LW/FCT and BE/FCT yield solutions of comparable quality. At the same
time, the fully implicit scheme is unconditionally positive and can be applied at Courant
numbers greater than unity. An example for1t = 21x demonstrates that large time steps
degrade the accuracy, but the numerical solution still looks quite reasonable. This indicates
that realistic applications can be efficiently simulated. Note that in all cases the shock
propagates with correct speed, which implies that the mass is conserved.

Convection of a Cosine Wave

Let us come back to linear convection problems with constant velocityv = 1. If the initial
data is smooth enough, then the conventional Galerkin method performs remarkably well.
As a matter of fact, it was used to compute the dotted reference solution for the cosine profile
in Fig. 4. Hence, flux correction is superfluous in this case. However, it is often impossible
to detect such situationsa priori. For most practical CFD applications, the smoothness of
the unknown solution varies in space and time. Therefore, the numerical method should be
capable of handling both smooth and discontinuous data.

The first plot in Fig. 4 reveals that the FCT algorithm in its original form can pollute the
high-order solution by spurious ripples which can be traced back to the outflow boundary.
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FIG. 3. Inviscid Burgers equation. Solution att = 0.4.

The time step was deliberately chosen very small in this example, since this was found to
amplify the perturbations. Any of the techniques for boundary correction proposed above
makes it possible to restore the smoothness of the solution and obtain accurate results. The
BE/FCT scheme remains stable and positive for Courant numbers beyond unity, although
the amplitude of the wave is dampened appreciably.

Stretching/Compression by a Variable Velocity

The next two examples illustrate the performance of our FEM–FCT schemes for linear
convection problems with velocity depending on the spatial coordinate. The nonuniform
velocity field is intended to expose the behavior of the methods under circumstances when a
physical growth or decay of extrema occurs. It is important to ascertain that the flux limiter
is able to distinguish between physical and nonphysical extrema.

Consider a step function which is convected and spread by the variable velocity fieldv = x
as shown in Fig. 5. In this case, both LW/FCT and BE/FCT deliver nonoscillatory but quite
diffusive numerical results. Note that the left border of the profile is resolved considerably
better than the right one, since the Courant number increases withx. It should be emphasized
that the observed smoothing is not a deficiency of flux correction. In fact, the high-order
method produces an equally diffusive solution with oscillations superimposed on it.

If the transported profile undergoes compression rather than stretching, the algorithm
performs much better. This is exemplified by Fig. 6, where the velocity is taken to be
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FIG. 4. Convection of a cosine wave. Solution att = 0.5.

v = 1− x. In this case, the mass gradually accumulates in the center of the computational
domain. The solutions obtained by the LW/FCT and BE/FCT schemes are virtually identical
and exhibit superb accuracy.

Convection of Monotone Profiles

The following one-dimensional test problem deals with the convection of monotone data.
Let the initial profile be a smooth approximation to the Heavyside step function. The front

FIG. 5. Stretching by the variable velocity fieldv = x. Solution att = 1.0.
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FIG. 6. Compression by the variable velocity fieldv = 1− x. Solution att = 1.0.

is chosen to be rather steep, so that flux correction is required to preclude the arising of
undershoots and overshoots.

The numerical solutions produced by the FEM–FCT schemes in the case of constant
velocity v = 1 are compared with each other and with the exact solution in Fig. 7. The
explicit LW/FCT scheme provides an excellent resolution of the front, while the implicit
BE/FCT scheme is moderately diffusive for “large” time steps. It can be seen that both
methods are free of false antidiffusion inherent, e.g., to the popular superbee limiter [34].
Thus, no artificial steepening of the profile takes place.

Convection of the same function with the variable velocityv = x is investigated in Fig. 8.
The qualitative behavior of the methods is essentially the same as in the case of constant
velocity. It is noteworthy that, in contrast to the stretching of a discontinuous pulse, no
pronounced extra smearing is observed.

Steady-State Convection–Diffusion in 1D

As we have seen, the fully implicit BE/FCT scheme is quite diffusive for transient
convection problems. At the same time, it appears to be very attractive as an iterative

FIG. 7. Convection of a monotone profile withv = 1. Solution att = 1.0.
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FIG. 8. Convection of a monotone profile withv = x. Solution att = 1.0.

solver for (quasi-) steady-state convection–diffusion equations. Indeed, the steady-state
solution can be obtained by applying a FEM–FCT method to the associated time-dependent
problem. Possible nonlinearities can be treated in the same iterative loop. The temporal
accuracy of the method does not matter in this case, since the time step is merely an artifi-
cial parameter which determines the convergence rates. In fact, local time stepping can be
employed [5]. As long as the accuracy of the converged solution depends entirely on the
spatial discretization, it is expedient to choose the time steps as large as possible, so as to
reduce the computational cost. This makes explicit schemes noncompetitive, since they are
subject to a restrictive CFL condition. Moreover, the numerical solution produced, e.g., by
the Lax–Wendroff method is affected by the streamline diffusion depending on the artificial
time step. Hence, steady-state problems call for an implicit treatment.

Consider the one-dimensional stationary convection–diffusion equation

v
∂u

∂x
− ε ∂

2u

∂x2
= 0, u(0) = 1, u(1) = 0

for v = 1 andε = 10−2, which corresponds to the Peclet numberPe= 100. This is a
singularly perturbed elliptic problem, which is characterized by the presence of a sharp front
next to the outflow boundaryx = 1. The boundary layer develops because the solution of the
reduced problem (ε = 0) does not satisfy the homogeneous Dirichlet boundary condition
imposed for the full problem.

Let us discretize the domain by a uniform mesh of 10 linear elements and compare the
results produced by the backward Euler scheme without and with flux correction. As an
initial guess, we take the straight lineu0 = 1− x. The obtained solutions are displayed in
Fig. 9. The standard Galerkin method reduces to the central difference approximation,
which is seen to be oscillatory for the coarse mesh under consideration. Remarkably,
the flux-corrected steady-state solution is nodally exact. Actually, even the “low-order”
method yields excellent results in this case. Recall that the tensor of artificial dissipation
is constructed in such a way that it just compensates the lack of physical diffusion. If
any physical diffusion is present, then less artificial diffusion is required to enforce pos-
itivity. Thus, for ε > 0 the low-order scheme is less diffusive than the classical upwind
method.
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FIG. 9. Steady-state convection–diffusion in 1D,ε = 10−2.

Convection of a Discontinuous Profile in 2D

The first two-dimensional example shown in Fig. 10 is a direct generalization of the
1D problem dealing with the uniform convection of a step function. In the 2D case, the
computational domain is a unit square. The velocity is constant and equal to unity in
each coordinate direction:v = (1, 1). Homogeneous Dirichlet boundary conditions are
prescribed on the inflow boundariesx = 0 and y = 0. A discontinuous initial profile is
transported along the streamlines, which are parallel to the diagonaly = x.

The numerical solutions at the time instantt = 0.5 obtained by the prelimited LW/FCT
and BE/FCT schemes corroborate the diagnosis made on the basis of the one-dimensional

FIG. 10. Convection of a discontinuous profile. Initial data and solution att = 0.5.
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examination. Both methods succeed in the elimination of wiggles and preserve the steepness
of the profile fairly well, unlike the underlying low-order scheme. What might look like
an overshoot at the leading corner is just an optical effect due to lateral erosion (actually
0≤ u ≤ 1 everywhere). The temporal error induced by the backward Euler time stepping
is still nonnegligible for the employed time step1t = 10−3. It is evident that the second-
order LW/FCT scheme outperforms the first-order BE/FCT scheme when it comes to the
time-accurate solution of transient convection problems.

Convection of a Smooth Profile in 2D

Our next test problem deals with the evolution of a sinusoidal profile. Consider the
same computational domain and velocity field as in the previous example and let the initial
condition be given by

u(x, y, 0) = sin(2πx) · sin(2πy).

The prescribed boundary conditions are

u(0, y, t) = −sin(2π t) · sin(2π(y− t)),

u(x, 0, t) = −sin(2π t) · sin(2π(x − t)),

so that the initial data matches the exact solution at the timet = 1.0.
The numerical results produced by the FEM–FCT schemes with boundary correction are

displayed in Fig. 11. All remarks regarding the treatment of outflow boundaries remain valid

FIG. 11. Convection of a smooth profile. Initial data and solution att = 1.0.



554 KUZMIN AND TUREK

in two dimensions. The maximum norm of the solution quoted in the diagrams serves as an
indicator of numerical damping. The diffusive nature of the BE/FCT method is excused to
some extent by its ability to operate with larger time steps.

Rotation of a Cylinder with a Slot

Let us turn to the investigation of a solid body rotation in a nonuniform velocity field
v = (−y, x). The counterclockwise rotation takes place about the center of the square
domain(−1, 1)× (−1, 1). The initial data is a cylinder with a slot defined by

u(x, y, 0) =
{

1, R< 1/3 and(|x| > 0.05 or y > 0.5),
0, otherwise,

where

R=
√

x2+ (y− 1/3)2.

This challenging two-dimensional benchmark problem was considered by L¨ohneret al.
[25], Zalesak [36], and many others.

Figure 12 demonstrates that both LW/FCT and BE/FCT produce excellent results as
long as the time step is small enough. The prelimiting of antidiffusive fluxes has proved to
be expedient for this problem. If it is omitted, the numerical solution is contaminated by

FIG. 12. Rotation of a cylinder with a slot. Initial data and solution att = 2π .
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innocuous but ugly ripples. The last diagram illustrates the behavior of the implicit scheme
at large Courant numbers. Since the velocity increases with distance from the origin, the
slot is resolved considerably better than the rear of the cylinder.

Steady-State Convection–Diffusion in 2D

Finally, let us illustrate the advantage of the BE/FCT method by a two-dimensional
steady-state example. The convection–diffusion equation at hand reads

v · ∇u− ε1u = 0 inÄ = (0, 1)× (0, 1),

wherev = (cos 10◦, sin 10◦) andε = 10−3. The concomitant boundary conditions are

∂u

∂y
(x, 1) = 0, u(x, 0) = u(1, y) = 0, u(0, y) =

{
1, y ≥ 0.5,
0, y < 0.5.

A reasonable initial approximation is given by

u0(x, y) =
{

1− x, y ≥ 0.5,
0, y < 0.5.

For practical applications, it is worthwhile to compute the stationary low-order solution
using any direct or iterative solver, and then activate the time-dependent FEM–FCT algo-
rithm. In this case, the cost of flux correction is minimized, since the initial guess should be
close enough to the steady-state limit. Furthermore, the use of the consistent mass matrix
is not justified for stationary problems, so that mass lumping is appropriate also for the
high-order scheme.

The numerical solutions obtained by the BE/Galerkin and BE/FCT schemes on a uniform
mesh of 32× 32 bilinear elements are depicted in Fig. 13. It is observed that the Galerkin
method without flux correction gives rise to spurious oscillations in the boundary layer.
This is obviously not the case for the flux-corrected solution, which is highly accurate and
satisfies the discrete maximum principle. It follows that BE/FCT is a promising solver for
convection-dominated (quasi-) steady-state problems, which makes up for its low temporal
accuracy exposed in the previous examples.

FIG. 13. Steady-state convection–diffusion in 2D,ε = 10−3.
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8. CONCLUSIONS AND OUTLOOK

A new approach to flux correction for finite elements was presented. Its major highlights
include: the novel technique for the construction of nonoscillatory low-order schemes, the
flux-based representation of antidiffusive terms, and the extension of the FEM–FCT method-
ology to implicit time discretizations. The low-order transport operator was constructed by
elimination of all negative off-diagonal entries of the discrete high-order operator. A deci-
sive advantage of this strategy is its applicability to arbitrary finite element matrices and
the fact that it yields the least diffusive positivity-preserving method, which is superior to
the upwind discretization if any physical diffusion is present. The structure of the discrete
antidiffusion operator was exploited to decompose it into a sum of internodal fluxes which
can be processed in much the same way as their finite difference counterparts. In particular,
an extra prelimiting step was reintroduced to get rid of spurious ripples which are gener-
ated otherwise. The flux-based algorithm is readily portable to higher dimensions, so that
the same subroutines can be used in 1D, 2D, and 3D implementations. The mechanisms
underlying flux correction were analyzed on the basis of rigorous positivity criteria, and
an implicit version of the FEM–FCT procedure was elaborated. A unified flux limiter was
devised for explicit and implicit schemes. It was proved that the fully implicit backward
Euler method is unconditionally positive, whereas other schemes are subject to a CFL-like
condition. The upper bound for the time step is easily computable and can be used to steer
adaptive time stepping.

The behavior of the proposed schemes was studied numerically for both evolutionary
and steady-state problems. Encouraging results were obtained for a wide range of one-
and two-dimensional examples. The best transient solutions were produced by the second-
order schemes of Lax–Wendroff and Crank–Nicolson type. The backward Euler method is
first-order accurate in time, but it constitutes an excellent solver for steady-state problems.
In addition, the implicit treatment is appropriate if a nonuniform distribution of Courant
numbers (due to adaptive mesh refinement or strongly varying velocities) makes the CFL
condition too restrictive. In other cases, explicit or semi-implicit time stepping should
be employed for accuracy reasons. Hence, both explicit and implicit FEM–FCT schemes
belong in a CFD toolbox for convection-dominated transport problems.

Apart from the simple test problems considered in this paper, we have successfully ap-
plied the new FEM–FCT algorithms to scalar transport equations governing the evolution
of phase holdups and concentrations of species of gas–liquid reactors [23]. Such coupled
multiphase flow problems described by two-fluid models are especially sensitive to non-
physical oscillations and excessive numerical diffusion, so that the use of high-resolution
schemes is indispensable [34]. One of the feasible directions for further research is the in-
tegration of flux limiters into incompressible flow solvers for the Navier–Stokes equations
in the medium and high Reynolds number regime. Even though the presence of the viscous
term makes the velocity less susceptible to undershoots and overshoots, linear high-order
methods of the streamline diffusion type sometimes yield unsatisfactory results (e.g., in the
case of strongly anisotropic meshes). Since the cost of flux correction is rather high, it might
be used interchangeably with cheaper artificial viscosity methods. The latter ones can be
based on the same high- and low-order transport operators but use some heuristic sensors
(e.g., the local Reynolds number) to determine the blending factors.

As elucidated in the monograph [35] and illustrated by representative benchmark compu-
tations in [30], unconditionally stable implicit schemes appear to be particularly attractive
for the treatment of the incompressible Navier–Stokes equations. On one hand, explicit
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schemes for the Burgers equation do not require any advanced linear algebra tools, since
the consistent mass matrix can be efficiently “inverted,” e.g., by just a few Jacobi-like iter-
ations using the lumped mass matrix as a preconditioner. On the other hand, the pressure
Poisson equation represents an ill-conditioned elliptic problem which has to be solved at
each time step. Consequently, the CFL condition may become a formidable bottleneck, so
that a more implicit approach is to be preferred.

It should be emphasized that implicit schemes, including those with flux correction,
stipulate the use of optimized multigrid techniques [30]. Otherwise the advantages of un-
conditional stability cannot be realized due to a disproportionally high computational cost
per time step. Therefore, the development of properly tuned linear multigrid solvers is one
of our top priorities. Other aspects to be investigated include the application of FEM–FCT
schemes to systems of equations and locally refined unstructured grids, combination with
adaptive error control mechanisms in space and time, as well as the extension to noncon-
forming finite elements and higher order approximations. These issues are currently under
research and will be addressed in forthcoming papers.
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