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Flux correction in the finite element context is addressed. Criteria for positiv-
ity of the numerical solution are formulated, and the low-order transport operator
is constructed from the discrete high-order operator by adding modulated dissi-
pation so as to eliminate negative off-diagonal entries. The corresponding antid-
iffusive terms can be decomposed into a sum of genuine fluxes (rather than el-
ement contributions) which represent bilateral mass exchange between individual
nodes. Thereby, essentially one-dimensional flux correction tools can be readily ap-
plied to multidimensional problems involving unstructured meshes. The proposed
methodology guarantees mass conservation and makes it possible to design both
explicit and implicit FCT schemes based on a unified limiting strategy. Numeri-
cal results for a number of benchmark problems illustrate the performance of the
algorithm. (© 2002 Elsevier Science (USA)

Key Wordshigh resolution; finite elements; flux correction; positivity; mass con-
servation; unconditional stability.

1. INTRODUCTION

Many CFD problems involve transport of scalar quantities (e.g., density, temperatt
concentrations, turbulent kinetic energy and its dissipation rate) which must remain posi
for physical reasons. An algorithm which fails to enforce the positivity constraint mg
produce very poor numerical results. Classical upwind methods are positive but notoriol
diffusive. At the same time, high-order methods with streamline—diffusion-like stabilizatic
of convective terms tend to produce spurious undershoots and overshoots in regions
steep gradients. Therefore, some extra artificial diffusion has to be added locally in orde
suppress the nonphysical oscillations. However, a straightforward implementation of -
ideaintroduces a free parameter, which depends on the solution and is difficult to deterr
Artificial viscosity methods are inevitably confronted with a tradeoff between positivity ar
accuracy, whereby neither property can be guaranteed.
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Most of the modern high-resolution schemes for convection-dominated transport pr
lems blend high- and low-order discretizations, so as to eliminate the numerical rippl
This fundamental approach can be traced back to the concepts of flux-corrected-trans
(FCT), which were established by Boris and Book in their renowned paper [6]. Metho
based on flux (or slope) limiting are nonlinear and quite costly, but at the same time tt
are very robust and yield nonoscillatory results with sharp resolution of discontinuitie
There exists a variety of such schemes, most of which are amenable to finite differe
and finite volume discretizations but constitute a challenge to a finite element practitior
Many popular schemes are limited to one-dimensional problems or Cartesian grids v
directional splitting. A notable exception is the genuinely multidimensional formulation «
the FCT algorithm proposed by Zalesak [36].

The past decade has witnessed the advent of discontinuous Galerkin methods, w
effectively incorporate the concepts of numerical fluxes and slope limiters into the
nite element framework (see [11] and references therein). DG methods possess the
conservation property and admit approximations of arbitrarily high formal order. In fac
they represent a generalization of finite volume methods which enjoys the main adv
tages of the finite element approach. Discontinuous approximations lead to block diagc
mass matrices, whereby the blocks can be easily inverted by hand. If Legendre poly
mials are chosen as basis functions, the mass matrix is diagonal from the outset.
methods lend themselves s-p adaptivity, since there are no continuity constraints a
interelement boundaries and no special treatment is required for “hanging nodes.” H
ever, the number of degrees of freedom is increased as compared to continuous f
element methods. Furthermore, the inherently explicit Runge—Kutta DG schemes [9]
subject to a CFL condition which becomes increasingly restrictive for high-order metho
Another open problem is the choice of an empirical constant, which was introduced
make the “minmod” limiter less diffusive. In addition, DG methods were originally de
veloped for hyperbolic conservation laws and experience fundamental difficulties w
handling diffusion. A straightforward use of the discontinuous formulation for ellipti
or parabolic equations results in a variational crime, so that it is necessary to rew
the original problem as a first-order system for the unknown function and its deriv
tive [2, 10] or enforce the consistency of the discrete scheme by adding extra bounc
terms [3, 4].

The design of high-resolution finite element schemes based on continuous approximat
is even more challenging for a number of reasons. The consistent mass matrix introdt
considerable implicit antidiffusion which cannot be curtailed by explicit TVD-like methods
Therefore, mass lumping is commonly employed, which results in the loss of (fourth-ord
accuracy offered by the finite element method. Inherently one-dimensional flux limite
are applied edge-by-edge using solution values at the associated “ghost” nodes [1,
This nonrigorous extension of 1D concepts to multidimensions works well in practi
but, generally, such schemes are not positive and should be classified as artificial visce
methods. Furthermore, transition to an edge-based data structure as proposed bgtRéraire
[28] can be performed only for simplicial elements with linear basis functions which ha
a constant gradient. In addition, the physical fluxes have to be approximated by their lin
interpolants. In general, differential operators resulting from the Galerkin discretizati
cannot be represented as a sum of fluxes from one node into another. Therefore, comb
continuous finite element discretizations of high and low order in a mass-conserving fast
is a nontrivial task.
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An elegant finite element methodology which circumvents the above difficulties was
troduced by lohneret al. [24, 25]. Itis based on Zalesak’s edition of the FCT algorithm witk
antidiffusive element contributions in lieu of fluxes. The FEM—-FCT procedure preserv
the consistent mass matrix and is applicable to arbitrary unstructured meshes. Howev
closer look reveals that some important issues remain unresolved. The low-order scher
constructed by adding constant “mass diffusion” to the high-order method, and may cea:
be positive for large Courant numbers. Furthermore, the antidiffusive element contributi
redistribute the mass inside the whole element rather than between individual nodes.
results in a stronger coupling between the nodal values, so that it is no longer possibl
carry out an extra prelimiting step which is present in the monotone finite difference F
schemes. Consequently, the limiter may fail to preclude the arising of spurious ripple:
some cases. Last but not least, the original FEM—FCT procedure is suitable only for exp
time discretizations which are subject to a restrictive CFL condition. If the local Coura
number does not exhibit strong variations, then the time step is constrained by accu
considerations, so that the use of explicit time stepping is justified. At the same time,
stability limitation makes explicit methods extremely inefficient for problems with strongl
varying velocities and/or mesh sizes. Therefore, unconditionally stable implicit schemes
preferable for this class of applications. Likewise, the solution of steady-state problems
“time marching” calls for a fully implicit time discretization. Indeed, high temporal accurac
isirrelevant in this case, whereas larger (artificial) time steps reduce the computational ¢

In this paper, we formulate sufficient conditions for positivity of the numerical solutio
and provide guidelines for enforcing them in the framework of finite element FCT schen
[22]. The low-order operator is constructed at the discrete level using a technique whic
equivalent to upwinding in 1D and emulates it in multidimensions. The difference betwe
the high- and low-order terms admits decomposition into a sum of fluxes which repres
the mass exchange between two nodes sharing the same element. In the case of si
elements, the fluxes can be associated with edges of the finite element mesh. At the
time, interacting nodes of multilinear elements do not have to be connected by an edge.
comeback of a flux-based representation makes it possible to apply prelimiting of anti
fusive fluxes, which contributes greatly to elimination of numerical ripples. Furthermot
we analyze Zalesak’s limiter from the viewpoint of the postulated positivity criteria ar
provide a new interpretation which enables us to derive a family of implicit FEM—FC
schemes. The one based on the backward Euler time discretization is unconditionally st
and positive. To our knowledge, no other implicit high-resolution finite element schemes
available to date. The proposed algorithms preserve positivity, conserve mass, and prc
a sharp resolution of discontinuities as demonstrated by the numerical results for one-
two-dimensional test problems.

2. STANDARD FEM-FCT PROCEDURE

Consider a generic time-dependent conservation law

au

5p TV =V (eVu), (1)
whereu is the scalar quantity to be transporteds an externally specified velocity field,
ande is a diffusion coefficient. This problem is notoriously difficult to treat numerically ir
convection-dominated cases, i.e., wken small.
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Before embarking on the development of high-resolution finite element schemes usir
flux-based representation of (anti-) diffusive terms, let us recall the FEM—FCT proced
due to Lohneret al. [24]. Building on an earlier paper by Parrott and Christie [27], it has
established the framework for implementation of Zalesak’s multidimensional limiter [3
for finite element approximations on unstructured meshes. FEM—FCT employs cons
mass diffusion to construct the low-order scheme and delegates the role of antidiffus
fluxes to element contributions. This constitutes a viable approach but, as we are abol
see, there is some room for improvement.

The process of flux correction starts with introducing strong artificial diffusion into
high-order scheme, so as to enforce positivity of the numerical solution. According
the Godunov theorem, this inevitably degrades the accuracy of the method to first or
The crux of the FCT approach consists of reducing the error by adding compensa
antidiffusion in regions where the solution is smooth and where the Taylor series expan:
makes sense. The standard FEM—FCT procedure as proposeshhgriet al. [24, 25]
involves six algorithmic steps, which can be summarized as follows:

1. Discretize the governing equation using an explicit high-order finite element meth
with an appropriate stabilization of convective terms.

2. Perform mass lumping and insert a discrete diffusion operator into the high-or
scheme to construct a nonoscillatory low-order method.

3. Invoke the low-order scheme to compute a provisional solutfowhich is supposed
to preserve positivity.

4. Compute the antidiffusive element contributidhsneeded to recover the high accu-
racy of the original method.

5. Limit the antidiffusive element contributions so as to preclude the formation of ne
and the enhancement of existing extrema.

6. Apply the corrected antidiffusive element contributionsitoin order to obtain the
end-of-step solutiom"*.

The limiting strategy employed in step 5 is crucial to the performance of the method.
amounts to multiplying the antidiffusive element contributions by certain correction factc
which vary between zero and unity. The final solutidf® is given by

uMt =u- + ZaeFe,i, O<ae=1l )
e

Here Fe; denotes the antidiffusive contribution of elemento nodei. The control of
artificial dissipation is executed by monitoring the smoothness of the solution and adaptiv
selecting the correction factors so as to switch between the diffusive low-order solut
(ae = 0) and the oscillatory high-order solutiom,(= 1). The objective of the flux limiter

is to utilize the antidiffusive element contributions to the greatest extent possible withc
generating nonphysical wiggles and violating the positivity constraint. The ins and outs
the FEM—FCT algorithm are elucidated below.

High-Order Scheme

The governing equation discretized in space and time by an explicit high-order mett
can be cast into the form

McAU = R, (3)
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where Mc denotes the consistent mass mateby = u"*! — u" is the vector of nodal

increments, and the load vectBrcomprises the convective and diffusive terms evaluate

at the old time level. bhneret al. [24, 25] employed a two-step Taylor—-Galerkin methoc

of the Lax—Wendroff type. However, any other explicit finite element scheme is feasible
The solution to problem (3) clearly satisfies

M AUt = R+ (M. — Mo)aut,  Au =u —u (4)

Here the superscrigtl refers to the high-order scheme, aid is the (row-sum) lumped
mass matrix, which is known to possess the conservation property [17]. The second t
in the right-hand side represents the antidiffusion built into the consistent mass mat
which makes it possible to obtain time-accurate solutions to transient problems albeit at
expense of solving a (well-conditioned) linear system at each time step.

Low-Order Scheme

The accuracy offered by the consistent mass matrix has to be foregone by linear positi
preserving schemesohneret al. [24] perform mass lumping and add explicit mass diffusior
to transform the high-order method into a low-order one,

M, AU = R+ cg(Mc — MOu",  Aut =ut —u", (5)

where the superscrift denotes the low-order scheme, ands some constant diffusion
coefficient. In particular, the choiag = 1 yields [14, 31]

M ut = McUu” + R, (6)

which corresponds to the high-order method with mass lumping carried out only in t
left-hand side. This technique converts the one-dimensional Lax—Wendroff method int
scheme which is stable and monotone for Courant numbers

||<\/E
v| < 3

This is more restrictive than the CFL condition for the classical upwind discretizatic
Furthermore, no information is available about the behavior of the solution in more gene
settings.

Adding sufficiently large constant diffusion to achieve monotonicity can be traced ba
to the original SHASTA scheme of Boris and Book [6]. While this approach has been us
successfully by many authors, it may fail in some cases. Hence, the diffusion coefficien
and the time steprt should be chosen with care to obtain nonoscillatory results.

Antidiffusive Element Contributions

Note that if we subtract (5) from (4), the unwieldy ter® vanishes. Furthermore,
AuM — Aut = ut — ub, so that the antidiffusive element contributions are given by

Fe= M| (ML — Mc)(cal" + AOH). 7
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The above notation is to be understood in the following sense. The local antidiffusi
operatorl\?IL - I\7Ic is constructed foelementmass matrices and acts upon the functior
values at the nodes of the element. This results in a vector with length equal to the nun
of local degrees of freedom. Finally, its elements are divided by the corresponding diagc
entries of theglobal matrix M to yield the antidiffusive element contributions.

Solution Bounds

The admissible solution range is determined by searching for local extrema in the Ic
order solutionuLJ;gl and in the old solutiou” [36]. Lohneret al. [24, 25] estimate the
solution boundsi™™ by the following three-step algorithm:

1. Assembles* from the nodal values af- or u", whichever is greater/smaller:
U = It ). ®)
2. Compute the maximum/minimum valuewfwithin each element:
uf = mauf, i € Ne. 9

3. Pick the maximum/minimum value of* over all elements containing the node:

max
u™ = m2utt,  ee Ei. (10)
Thus, the unknown solution™* at any node should be bounded by the maximum an

minimum values ofi- andu™ at the stencil associated with this node.

Screening the old solution along with the low-order one was proposed by Zalesak
alleviate “peak clipping” inherent to the SHASTA scheme. This was shown to yield
considerable improvement for a number of test configurations. However, this generaliza
may produce numerical ripples for other problems, for instance, if the velocity field is n
divergence-free. In this case, physical extrema may decay with time (see Fig. 5), so
adopting solution bounds from the previous time step would produce an overshoot. Tt
it is prudent to seti* = u" as in the original method of Boris and Book.

Limiting Strategy

The limiting process is based on Zalesak’s multidimensional flux correction algorith
[36]. Six auxiliary quantities are defined for each node:

e P~ the sum of all positive/negative antidiffusive element contributions to hode

=m0, Fei). (11)
ecE;
e Q, the maximum/minimum admissible increment for node

max

QF =u™ —uy. (12)
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e R*, the least upper bound for the correction factors which guarantees no oversh
undershoot at node

(13)

. [min{l, Qf/PF) if BT #0,
= 0, if P~ 0.

The correction factors must be chosen so that the antidiffusive element contributi
acting in concert are unable to create nonphysical extrema. A suitable limiter is given t

| RF, if Fei >0,
=min 14
e ieNe{ R, if Fei <O. 4

It is safe enough to guarantee that the constrafit < u* < uM™ js satisfied at all
nodes. Hence, the final solution will preserve positivity if the low-order one does. Howev
numerical ripples of low amplitude can and do occur in some cases.

3. POSITIVITY AND LED CRITERIA

In order to derive an alternative FEM—FCT formulation applicable to implicit time stef
ping schemes, we need to introduce some mathematical tools. This section is devoted t
analysis of properties which the discrete scheme must satisfy to maintain positivity of
numerical solution. In subsequent sections we will consider the issue of mass conserve
and the structure of discrete diffusion operators, which are also of paramount importa
for the development of high-resolution finite element schemes.

Let the governing equation (1) be discretized on an arbitrary (possibly unstructur
mesh. Assume that the semi-discrete problem can be represented in the form

du
d—tIZZCijUj, ZCij=0, (15)
j j

whereu; are the nodal values, ar] are some coefficients depending on the procedur
employed for spatial discretization. In particular, the lumped-mass Galerkin finite elem
discretization with basis functions which sum to unity at each point is seen to admit st
representation if the flow is incompressibke (v = 0).

Since the coefficient matrix has zero row sum, the scheme can be rewritten as

%=ZQ;(U1—UO~ (16)
j#

Furthermore, suppose that all coefficients are nonnegaijve: 0, j #i. Then such a
scheme is stable in tHe,,-norm. Indeed, if); is a maximum, them; — u; < 0,Vj, so that
% < 0. Hence, a maximum cannot increase, and similarly a minimum cannot decres
As arule, coefficient matrices are sparse, soc¢fiat 0 unless andj are adjacent nodes.
Arguing as above, one can show that in this cakeal maximum cannot increase, and a
local minimum cannot decrease. Schemes which possess this property will be called I
extremum diminishing (LED).

The LED criterion was introduced by Jameson [18, 19] as a convenient tool for t
design of high-resolution schemes on unstructured meshes. Itimplies positivity, since if
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solution is positive everywhere, then so is the global minimum which cannot decrease
definition. Hence, the LED property provides an effective mechanism for preventing t
birth and growth of nonphysical oscillations. In the one-dimensional case, it guarantees
the total variation of the solution defined as

+00
TV(u) = /

oo

au

X dx a7

does not increase. For the sake of simplicity, consider homogeneous Dirichlet bounc
conditions at both endpoints. Then the total variation is given by

TV(u) =2 (Z maxu — Z min u). (18)

Thus, a one-dimensional LED scheme is necessarily total variation diminishing (TVL
This is a highly advantageous property, which has formed the basis for the developmer
a whole class of nonoscillatory schemes. The advantage of the LED principle as compz
to TVD concepts is its applicability to multidimensional problems on both structured al
unstructured meshes.

Recall that Egs. (15) and (16) correspond to a semi-discrete convection—diffusion pr
lem. Let us now investigate the conditions under which a LED scheme will remain positi
after the time discretization. If a standard one-stegcheme is employed, the fully dis-
cretized equation reads

Uin+1_uin —QZC--(UUH—UDH)+(1—9)Zci'(un_u'n) 0<H<1 (19)
7At = - 1 i i — J j i) =0 =1
j# !

The choice of parameteér specifies the type of time stepping. The extreme césed)
andé = 1 define the well-known forward and backward Euler methods. Both of them a
first-order accurate with respect to the time step The method corresponding o= %

is known as the Crank—Nicolson scheme, which is second-order accurate. Furthermore
following theorem holds:

PosITiviTy THEOREM 1. A local extremum diminishing scheme discretized in time b
the backward Euler method is unconditionally positive. Other time stepping scli@mes
0 < 1) preserve positivity under an appropriate CFL-like condition.

Proof. Let us first prove the unconditional positivity of the backward Euler method. |
this case, the time discretization is fully implicit, so that the last term in the right-hand si
of Eq. (19) vanishes. Assume that the discrete soluildn is negative at some nodes and
denote byk the node at which the global minimum is attained. The new solution at th
node satisfies

Ut = up + ALY o (Ut — ugtt). (20)
j#k

By inductive assumption, the old soluti@® must be nonnegative everywhere. The co-
efficientsc,; are also nonnegative due to the LED property,uf6* < 0 implies that
uj*t — upt* < 0for somej. However, this leads to a contradiction, singé* was chosen

to be the global minimum. Hence, the positivityu¥is inherited byu"+?,
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Now let us tackle® < 1. The above considerations for the implicit term show that th
discrete scheme (19) will preserve positivity if the explicit term satisfies the inequality

U+ At —0) > G (uf —uf) =0 Vi. (21)
i

As long asul! > 0 andg; > 0, itis sufficient to require that

1+ At(1—0)mingc; > 0, (22)
]

wherecii = —3_,_; ¢; are the diagonal elements of the original coefficient matrix define
by Eq. (15). This condition provides the desired positivity criterion, which can be used 1
the time step control. m

If the discrete scheme is not local extremum diminishing (e.g., due to compressibility
the presence of reactive terms), then a weaker positivity criterion should be applied. |
based on the concept of drmatrix as elucidated below.

DEFINITION. A nonsingular discrete operatdre R"*" is called an M-matrix ify; < 0
fori # j and all the entries oA~! are nonnegative.

If Ais strictly diagonally dominant aral; > 0, whilea;; < O fori # j, thenAis an M-
matrix (see, e.g., [29]). Note that for M-matricAg > 0 implies thatx > 0. This motivates
the following generalization of the positivity theorem:

PosITiviTy THEOREM 2. Let the numerical scheme be represented in abstract matr
operator form as

Lu™?! = RU".

A sufficient condition for such scheme to preserve positivity is that L be an M-matrix &
all entries of R be nonnegatii® > 0).

Proof. The inverse ofL is nonnegative due to the M-matrix property. Thug&H! =
L~'Ru" >0,aslongas" > 0. m

Remark 1. Conditions of the Theorem are sufficient (but not necessary) to guaran
that the numerical solution satisfies the discrete maximum principle.

Remark 2. It seems expedient to require that the steady-state counterparbefan
M-matrix as well. Otherwise, nonphysical ripples might emerge even though the solut
remains positive.

Remark 3. As before, the time step can affect the sign of matrix entries, so that t
conditionR > 0 yields a CFL-like upper bound for explicit schemes.

The above positivity criteria lay the groundwork for the construction of high-resolutic
numerical schemes. The desired properties of discrete operators can be realized b
introduction of artificial diffusion or by the use of upwind biasing. However, it was show
by Godunov that no linear discretization method of order higher than first can guarar
monotonicity of the numerical solution. In practice, this means that the results produc
by such schemes are overly diffusive. Superior approximations to convection-domine
transport problems can be obtained only by means of sophisticated nonlinear methods
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coefficients depending on the solution. The discretization process is typically control
by flux or slope limiters which adaptively switch between high- and low-order method
A high-order approximation is used in regions where the solution is smooth, whereas
order is reduced in the vicinity of discontinuities so as to dampen nonphysical undershc
and overshoots. We have already seen how this can be accomplished in the framewo
the FEM—FCT methodology.

4. MASS CONSERVATION

Conservation of massis crucial to the design of numerical methods for the bulk of transy
problems [17]. In particular, a failure of the algorithm to conserve mass may cause sho
to propagate with wrong speed if nonlinear conservation laws (e.g., the inviscid Burg
equation) are considered. Nonconservative numerical schemes can produce unaccey
results also in many other cases, so they should be typically avoided.

The conventional Galerkin finite element discretization conserves mass in an integ
sense. Indeed, the weak formulation of Eq. (1) reads

" [ou

/ [at +V.(vu) —V- (eVu)} wdx =0, Vw. (23)
Q

The associated semi-discrete system is obtained by using an approximatiaracfuitable

finite-dimensional space and applying the basis functigria lieu of w. For customary

finite elements, we havg; ¢i = 1, so that the sum of all equations yields the original

conservation law in the integral form

E/udx:—/(vu—eVu)nds (24)
dt Jo s

wheren is the unit outward normal. It can be seen that the total masséhanges only
due to convective and diffusive fluxes through the boundary.

Finite volume and discontinuous Galerkin methods apply formulation (24) directly
each element of the triangulation, so that mass conservation is enforced not only globally
also locally. Flux correction for such discontinuous approximations is fairly straightforwar
The objective of this paper is to extend the available FCT machinery to continuous (lin
and multilinear) finite elements.

While the standard Galerkin discretization is conservative, this favorable property ir
be lost in the quest to get rid of nonphysical oscillations which contaminate numeri
solutions to convection-dominated problems. For instance, the most straightforward
inexpensive algorithm “inspired” by the FCT procedure would be:

1. Solve the transport equation by a high-order scheme prone to oscillate.

2. Estimate the upper and lower solution bounds using sopréri knowledge and/or
numerical results produced by a monotone low-order scheme.

3. “Trim” the high-order solution so as to make it stay within the bounds.

Unfortunately, this approach is not to be recommended for an obvious reason: it doe
conserve mass. This is a quite instructive example, since any other nonconservative limi
technique is equally unreliable but almost certainly more expensive. If the above algorit
is to be employed, it should be complemented by an extra postproccessing step for
recovery of the lost mass [21].
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5. STRUCTURE OF DIFFUSION OPERATORS

Itis well known that the Galerkin discretization is unstable for pure convection problen
Therefore, the discrete scheme must contain enough dissipation (of physical or nume
origin) to damp out the instabilities. Furthermore, properly tuned artificial diffusion |
the key tool for rendering a numerical scheme positive and local extremum diminishi
The structure of the involved diffusive terms is of primary importance for subseque
considerations, so it is worthwhile to study it in some detail. The most common d
crete diffusion operators encountered in finite element schemes for transport probl
are:

e The discrete Laplacian operator

di? = / Vi - Voj dX,
Q

which typically results from the discretization of physical diffusion terms. Itis also referre
to as the “stiffness matrix.”
e The streamline diffusion operator

a3 :/V-V<piv-V<pj dx,
Q

which represents artificial diffusion in the streamline direction added in order to sta
lize the convective terms. It can be justified in different ways. The concept of streamli
diffusion was introduced by Brooks and Hughes [7] and employed within a consiste
Petrov—Galerkin formulation. A similar approach was followed by Johnson [20] and t
collaborators. The least-squares formulation [8] also gives rise to a streamline diffus
operator of the form above. Furthermore, streamline diffusion terms can be attributec
higher-order temporal approximations afforded by Taylor—-Galerkin methods [13].
e The mass diffusion operator

diT:/(Pi((Pj — &ij) dx,
Q

which is given by the difference between the consistent mass mdgiand its diagonal
counterpartM_ obtained by the row-sum mass lumping. As we have seen, mass diffus
can be used for the construction of low-order finite element schemes to be combined
high-order ones in the FCT framework.

In spite of their different nature and appearance, discrete diffusion operators pos:
some common features. The most important ones are the symmetry

dij = dj; (25)

and zero row/column sums

> dj=) dj=0 (26)
j i
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(for basis functions satisfying ; ¢; = 1). A tensorD having these properties can be
treated as a generalized diffusion operator and constructed so as to provide an approy
modification of the numerical scheme.

The application of a discrete diffusion operator to the vector of nodal values yields

(Du)i = djuj = dij(uj —u) (27)
j

J#

due to the zero row sum property. Let us define the fliyxirom nodej into nodei as
fij = dij (Uj —Uj). Then

(Du); = Z fij, i =—"1. (28)
j#i

Hence, diffusive terms can be decomposed into a sum of numerical fluxes similar to th
encountered in conservative finite difference schemes. Each node receives contribu
from all nodes sharing an element with it. Mass conservation is guaranteed, since the flt
representing mass transfer from one node into another are equal in magnitude and opp
in sign. Consequently, it is safe to limit such fluxes, and this can be done in an essenti
one-dimensional fashion.

6. NEW FEM-FCT PROCEDURE

Now we are in a position to derive a flux-based FCT formulation as an alternative
the element-based approach aftinieret al. [24, 25] The representation of antidiffusion
in terms of element contributions restricts the choice of artificial diffusion operators a
prevents the use of some inherently one-dimensional flux correction tools. The flux-ba
decomposition of (anti-) diffusive terms introduced above appears to be much more flexi
and efficient. High-resolution finite element schemes of this type were proposed in [14,
32]. The structure of the (constant) mass diffusion operator was utilized to develop artific
viscosity, FCT, and TVD-like methods building on the concept of modulated dissipation. \
will follow a similar approach while using rigorous positivity criteria to develop both explici
and implicit FCT schemes. The mainideas behind the new methodology are presented be

Low-Order Scheme

The quality of the low-order method is of great importance for the overall performan
of an FCT algorithm. If the low-order solution ceases to be positive, oscillatory results w
certainly ensue. Furthermore, a perfect low-order scheme should contain just as much
ficial diffusion as is necessary to enforce positivity. This would facilitate the task of limitin
and preclude excessive smearing. For finite difference or finite volume discretizations,
best candidate for the low-order scheme is clearly the upwind method. An example ¢
finite element FCT algorithm using upwind as the low-order scheme can be found in
paper of Parrott and Christie [27]. However, upwinding is rather cumbersome and unnati
in the finite element context, which has ledhrieret al. [24] to replace it by mass diffusion
with a constant coefficient.

Adding the same amount of diffusion everywhere is computationally efficient, but tf
resulting method is not optimal as far as accuracy is concerned. If the free parameter ch
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is too large, the scheme is overdiffusive and the stability range is reduced. At the se
time, insufficient artificial diffusion may lead to the arising of spurious extrema which a
transmitted to the final solution. These shortcomings were recognized by Geoeglailou
[16], who attempted to design variable “optimal” diffusion coefficients depending on tl
local Courant number as in the upwind finite difference method. This seems to be a
remedy, since such algorithm can be expected to work well only on very regular meshes
may fail to preserve positivity. Another attempt to improve arhhér's method (without
referring to the original paper) was recently published in [33]. In contrast to [16], a const:
artificial diffusion coefficient was used to enforce the M-matrix property. In what follow:
we present a new approach, which does reconcile the conflicting demands for accuracy
positivity of the low-order scheme.
If the flow is incompressible, Eqg. (1) can be written in the nonconservative form:

au
E—l—V«Vu:V-(eVu). (29)
Let the spatial discretization be performed by the standard Galerkin finite element mett

This yields a semi-discrete problem of the form

du
Mc—— = K"y, 30
cqr (30)
whereMc is the consistent mass matrix, akd' is the discrete transport operator, which
has zero row sum, so that

KMy =kl —un). (31)
i

In general, the Galerkin scheme (30) is not local extremum diminishing, which manife
itself in the tendency to oscillate (especially in convection-dominated cases). However,
LED criteria at our disposal reveal what measures need to be taken in order to obta
usable low-order method.

First, we employ mass lumping to remove the implicit antidiffusion intrinsic to th
consistent mass matrix. The resulting scheme can be cast into the form (16) and wu
possess the LED property if all coefﬁcierkf#, j # 1 were nonnegative. This suggests the
rule for the construction of the low-order transport operator,

Kt =K" +D, (32)

whereD is a tensor of modulated dissipation. It is designed so as to eliminate all negat
off-diagonal entries of the high-order operator:

di = —Zdik, dj; =dji = max{O, —kiT,—kl!'i'}, Vi< j. (33)
k#i

In essence, this corresponds to applying one-dimensional diffusion operators associ
with the (fictitious) segments connecting the adjacent nodes. The global matrix assemb
performed in a standard way. It is easy to verify tBalhas zero row and column sums, and
thus enjoys all properties of generalized diffusion operators including mass conservat
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Note that if physical diffusion is strong enough, so that the coefficients are nonnegat
from the outset, then no artificial diffusion is added. Hence, in diffusion-dominated ca:
the matriceK " andK‘ are identical.

If the velocity field in Eq. (1) is not divergence-free, alocal accumulation of the conserv
quantity can occur. Therefore, the formation of physical extrema must be reckoned w
Nevertheless, the left-hand side operator will remain an M-matrix if the low-order opera
K’ is constructed as above. According to the second theorem, positivity will be presen
under a proper CFL-like condition. Depending on the sigivel/, admissible time steps
may be greater or smaller than those for the incompressible case. As a matter of fact
fully implicit scheme may become conditionally positive fér. v <« 0. However, this is
very unlikely to happen for any practical flows of interest.

In any event, the semi-discrete low-order scheme reads

d
MLd—ltjz(KHJrD)u:KLu, (34)

that is

dy;
mid—tIIZki'}'Uj-f-Zdij(Uj—Ui)IZkﬁUj, (35)
j

JA# i

wherem; denote the diagonal entries of the lumped mass matrix. It is notable that t
difference between the high- and low-order discretization of the transport terms adn
decomposition into fluxes.

According to the first positivity theorem, the backward Euler time discretization ofa LE
scheme is unconditionally positive, while other time stepping schemes preserve positi
aslong as

At < 1T19 miin{—mi/ki% | ki < 0}. (36)

This positivity condition gives a practical estimate of the maximum admissible time ste
It is influenced by the degree of implicitnegsand by the ration; / k. Hence, excessive
artificial diffusion not only degrades the accuracy of the method but also requires tak
smaller time steps. This is exemplified by the scheme (6), whereby the Lax—Wendi
method was augmented by mass diffusiocafstantmagnitude.

ExamPLE. Letusillustrate the construction of low-order operators by a one-dimensior
example. Consider the pure convection equation

au au
—+v—=0 37

ot X (37)
discretized on a uniform mesh of linear elements by the Galerkin method. For the sak
simplicity, assume that the velocityis constant and positive. The local element matrice:
have the form

ML_z{o 1]’ K _2{1 —1} (38)



FLUX CORRECTION TOOLS 539

After the global matrix assembly, the central difference approximation of the convect
term is recovered at interior nodes:

du Uiy —Ui_1
=—v——".

at - 2AX (39)

The minimum amount of artificial dissipation sufficient to enforce positivity is propol
tionaltod;, = v/2. The corresponding discrete diffusion operator restricted to one eleme
is given by

[‘):%hl _11};»@:1)[(1’ _01}. (40)

The resulting low-order scheme is seen to be equivalent to the upwind finite differel
method in the interior:
du; U — Uj—1
—_— = 41
dt TTAX (41)
Obviously, thisis the least diffusive linear scheme which preserves positivity. The associc
CFL condition reads
At 1
V— < ——. 42
AX —1-6 (42)
In particular, the fully explicit scheme is positive for Courant numbers up to unity.
To summarize, our technique for the construction of positive low-order operators redu
to standard upwinding for pure convection in one dimension and, unlilkethecalgorithm
of Georghiowet al. [16], itis applicable to arbitrary meshes and multidimensional problem
Moreover, the resulting scheme is less diffusive than the upwind method in the prese
of physical diffusion. A distinct advantage of the proposed approach is that the artific
diffusion operator is assembled at the discrete level and depends only on the location
magnitude of negative off-diagonal entries. The origin of discrete transport operators d
not matter, so that finite element matrices resulting from the discretization of 1D, 2D, ¢
3D problems can be treated in exactly the same way.

Flux-Based FEM—-FCT Formulation

Our next step is to reformulate the FEM—FCT procedure in terms of internodal flux
and to extend it to implicit time stepping schemes, so as to eliminate or alleviate se\
time step restrictions inherent to explicit methods. Of primary interest are the backw.
Euler and the Crank—Nicolson scheme. Both of them are unconditonally stable and
be used as a high-order method in conjunction with the Galerkin spatial discretization.
extra stabilization of convective terms is required in this case. At the same time, the fi
explicit Galerkin method needs to be stabilized. A classical way to accomplish this is to ¢
a proper amount of artificial diffusion in the streamline direction. In this paper, we use t
Lax—Wendroff method, whereby the streamline diffusion corresponds to the second-ol
term in the Taylor series expansion. An investigation of Lax—Wendroff schemes by me
of the modified equation method reveals that the introduced dissipation just counterbala
the intrinsic negative diffusion which renders the explicit Euler-Galerkin scheme unsta
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for pure convection problems. For an in-depth study of Lax—Wendroff and higher orc
Taylor—Galerkin methods, the reader is referred to [13].

The high-order transport operator can be transformed into a low-order one as explai
above. The resulting methods discretized in time by the starfdaotheme are related by
the formula

(ML —0AtKHU? = (ML + @ — o) AtKHU" + Ft, u), (43)
where the antidiffusion responsible for high spatial accuracy is given by
FuM, u") = —(Mc — Mp)Aut — At(KE — KM[ouH + (1 — 6)u"] + AtSU'.  (44)

HereSstands for the streamline diffusion operator which is present only in the fully explic
scheme. If the antidiffusive terfa(ut, u") is omitted, then the positive low-order scheme
is recovered, whereas retaining it yields the original high-order method.

It can readily be seen that all the matrices in (44) represent discrete (anti-) diffusi
operators and thereby lend themselves to decomposition into fluxes

fij = —mij(Auf — Au') — Atd[o(ul! —uf) + @ —0)(u —u)]
+AtSj(UT—Uin), fii =—"fi;, 1 <]. (45)

These raw antidiffusive fluxes offset the errors induced by mass lumping, “upwindin
and first-order time discretization (for the explicit scheme). Coefficientsd;j, ands;
denote the entries of the consistent mass matrix, artificial diffusion, and streamline diffus
operators, respectively.

In light of the above, the flux-corrected version of (43) can be written in the form

miu{‘“—eAtZki']u’j‘*l =m{; —l—Zaij fij, o) = aij, (46)
i j#

where «jj denote the correction factors (to be defined below), whileepresents the
positivity-preserving solution to the explicit subproblem

miti = miui”+(1—9)AtZkiLjuT. (47)
i

In essencell corresponds to an intermediate solution computed at the time iritant
by the explicit low-order scheme. It reducesutbfor the backward Euler method & 1)
and tou* for the forward Euler method(= 0).

The newly introduced family of FCT schemes distinguishes itself in that it is applicab
to explicit and implicit time discretizations alike. The fully explicit scheme is consister
with the standard FCT methodology. Note that implicit schemes require sdivimgon-
symmetric linear systems per time step: one for the high-order solution (which is neede
compute the antidiffusive fluxes) and one for the final solution. Nevertheless, implicit me
ods are typically more efficient than explicit ones because larger time steps can be take
iterative solvers are employed, the high-order solution provides a reasonable initial gu
for the final solution.
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It is obvious that the success of the FCT algorithm depends on the positivity of t
provisional solutionli and on the choice of correction factarg. For i to be positive,
the time step must satisfy the CFL-like condition (36) unless the scheme is fully impli
(@ =u"). As long as the left-hand side operator is an M-matrix, our positivity theoren
guarantee that the scheme (46) can be rendered positive by tuning the correction fac
The flux limiter is a key element of the FEM-FCT procedure, which needs to be adapte
the new formulation. Below we work out a unified limiting strategy for explicit and implici
schemes.

Limiting Strategy

Let us start with an optional but important component of the FCT limiter. It turns out th
explicit FCT schemes can benefit from canceling all antidiffusive fluxes directed down |
gradient offi:

fij =0, if fij (lj, — CI]) < 0. (48)

This test should be applidukforethe flux correction step. Its purpose is to ensure that th
flux does not smooth the low-order solution. To put it another way, an antidiffusive fl
is not allowed to be diffusive. When this happens, small-scale numerical ripples can
produced even though the solution remains positive. Hence, the limiter is positivity- but |
monotonicity-preserving [12].

The prelimiting of antidiffusive fluxes can be traced back to the celebrated SHAS
scheme. Zalesak also mentioned this approach in passing but did not promote its re
use. He argued that the majority of antidiffusive fluxes act of steepen the gradient, wil
the effect of (48) is minimal and cosmetic in nature. This remark has discouraged the
of prelimiting in FCT algorithms based on Zalesak’s multidimensional limiter. Apparent!
this is not the sole reason why this step is missing in the FEM—FCT procedu@haklt”
et al. [24, 25] The replacement of antidiffusive fluxes by element contributions makes t
prelimiting impossible to carry out for multidimensional problems. Only the restitution ¢
a flux-based formulation enables us to apply this technique in the finite element conte»

DeVore [12] has rediscovered the preprocessing of antidiffusive fluxes as a way to ach
monotonicity and demonstrated that it can lead to a dramatic qualitative improvemen
dynamic simulation results. Even for simple test problems with discontinuous solutio
remarkable “esthetic” improvements are observed (see the numerical examples bel
Therefore, the prelimiting step is to be included in explicit FCT algorithms. In our expe
ence, it remains relevant also for the implicit schemes introduced in this paper.

Let us proceed to the algorithm for selection of correction factors. It is largely equivale
to Zalesak’s |imiter but is derived and interpreted in a quite different way. As before, \
denote byu™" the maximum and minimum solution values at the ste§aithich consists
of the nodd and its nearest neighbors:

max X
u™ =nid;,  j e S. (49)
It should be borne in mind that the positivity-preserving auxiliary solufiea u“ (t"+1-%)

depends on the concrete time stepping scheme. The old saltitismo longer used in the
computation of local extrema.



542 KUZMIN AND TUREK

In accordance with the FCT theory, all antidiffusive fluxes which try to accentuate a loc
maximum or minimum must be completely canceled:
ojj = o, if lji = uimax, fij >0 or lji = uimin, fij < 0. (50)
If this applies to all fluxes into the node we are done. Otherwise, the remaining fluxes

have to be limited so as to comply with the positivity constraint. It is noteworthy that tf
right-hand side of our scheme (46) admits the representation

i Fi
RHS=mili + > o fij =mili +G Q1. G =ZJ#'7M, (51)
T Qi
where the multiplielQ; is chosen to be
QIJr = uimax_ 0i, if Zj;&i oij fij >0,
Qi = QI_ = uimin — 0, if Zj;éi ajj fij <0, (52)

1, if Zj;&i Qj fij =0.

By virtue of (50), we haveQ; # 0, so that no division by zero takes place. Furthermore, th
coefficient,c; is always nonnegative. Let the local extremufi{" be attained at a node
adjacent to the node Then the antidiffusive term exhibits a LED structure, and we obtail

RHS=ml; + ¢ @k — G) = (mj —¢)T; +¢lx, ¢ = 0. (53)

According to the positivity theorems, the FEM—FCT scheme (46) will preserve positivi
provided thatm; > ¢;. This important observation frames a general rule for the selection
correction factorsy;; .

It remains to show that Zalesak’s limiter does possess the desired properties. Letusre
it for our flux-based formulation. The quantiti®" andR* are redefined as

min{1, Qf/P*}, if P* #0,

1
P¥= -3 TR0 fy), RE= 54
T m, ;m'” ik R 0, if P* = 0. 4

Since now the nodes exchange mass on a bilateral basis, the flux limiter is given by
min{R", R} if fij >0,
aij = . + J, . ! (55)

min{R;", R1 } if fij < 0.

It is independent of the number of spatial dimensions and can be easily implemented
“black-box” routine which computes the correction factors given an array of antidiffusiy
fluxes for each pair of neighboring nodes.

The condition (50) is automatically satisfied, sif@g = 0 spellsR* = 0 anda;j = 0.
Hence, any enhancement of local extrema is neutralized by the limiter. Furthermore,
following estimate holds:

> aij fij <> iy maxo, fij} <mRTPT <mQf. (56)
i i
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In much the same way, it can be verified that

> aij fij = > ey minf0, fij} > mRTPT = m Q. (57)
[ i

This proves that the corrected antidiffusive fluxes satisfy the constraint ¢;.

Defect Correction

Many practical applications are described tgnlinear conservation laws. A typical
example is given by the inviscid Burgers equation

ou au _

_— — =0, 58
8t+u3x (58)

which constitutes a one-dimensional prototype of the Euler and Navier—Stokes equati
In this case, the matricdé™ andK - depend on the unknown solution, so that additiona
outer iterations are necessary for implicit schemes. It will be noted that the linearizatior
the problem using a constant extrapolation in time can entail a loss of mass and altel
shock speed.

The simplest iterative treatment of nonlinearities is afforded by a fixed point defe
correction method. If we consider an abstract nonlinear system of the form

A(uwu = b, (59)
then the basic nonlinear iteration can be formulated as
ut*d = u® — [c(u")] (AU —b), (60)

wherel is the outer iteration counter, ar@ is a suitably chosen “preconditioner” (an
approximate Freat derivative) which should be easy to invert. The iteration process
terminated when the residual is small enough exceeds a given limit. As a rule, the
“inversion” of C is also performed by some iterative (e.g., multigrid) procedure. Henc
a certain number of inner iterations per cycle is required. It is worth mentioning that t
problem does not have to be solved very accurately at each outer iteration. A mode
improvement of the residual (1-2 digits) is sufficient to obtain a good overall accuracy.

For a nonlinear problem of the form (43), it is reasonable to use the low-order opere
as the preconditioner:

C(u®) = ML — oAtk (u®).

This yields an iterative FEM—FCT algorithm, whereby the approximate solution and t
transport operator are successively updated as follows:

(M — 0AtKE(uD)u™ = (ML + 1 - o) AtK-uMHu” + F(u® u").  (61)
The last term is composed from the (limited) antidiffusive fluxes. Flux correction can

performed after each outer iteration or just once after the high-order solution has conver
In either case, positivity of the numerical solution is secured.
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Even if the problem at hand is linear, it might be worthwhile to equip implicit scheme
with an outer defect correction loop. At large time steps, the matrix of the high-ord
system degenerates, so that an iterative method may fail to converge. This can be recf
by resorting to defect correction, which approximates the original matrix by a well-behayv
preconditioner. The M-matrix properties of the low-order operator make it particular
amenable to iterative solution, which results in a very robust solver.

Treatment of Outflow Boundaries

Let us make some final remarks regarding the treatment of outflow boundaries. It turns
that FCT schemes can malfunction when applied to problems with smooth solutions (|
in situations where flux correction is actually redundant). This major deficiency manife:
itself in spurious ripples emanating from the outflow boundary and propagating into t
computational domain. A typical example will be presented below. The wiggles can
cured by (local) mesh refinement, but it is necessary to understand their origins in or
to find a better remedy. It goes without saying that a failure to cope with smooth solutic
seriously compromises the practical utility of the method even if it provides an excelle
resolution of shocks and contact discontinuities.

The pathological behavior of the FCT algorithm apparently occurs due to the lack
proper boundary adjustment. Similar problems are observed when Petrov—Galerkin mett
are applied without boundary correction for the streamline diffusion terms [5]. At the sar
time, consistent Lax—Wendroff and Taylor—Galerkin schemes do incorporate the neces
modification. It is given by the surface integral which arises naturally from integration t
parts of the second-order term [13]. Inclusion of similar integrals into the Galerkin lec
squares formulation also yields the desired effect [15].

In most cases, streamline diffusion methods without boundary modification still produ
acceptable solutions. However, boundary anomalies can be considerably aggravated by
correction. This can be attributed to a nonphysical natural boundary condition implied
the low-order scheme. For simplicity, consider a one-dimensional pure convection prob
and recall that in this case the boundary condition is to be prescribed only on the infl
boundary, i.e., at the endpoint where the velocity is directed into the domain. The positiv
of the low-order scheme is enforced by adding strong discrete diffusion to the underly
high-order scheme. This is equivalent to solving a parabolic convection—diffusion equat
with homogeneoudeumann boundary condition atthe outlet. Hence, the low-order solutic
will exhibit a kink whenever the exact solution has a nonvanishing derivative at the outfl
boundary. At the same time, high-order methods handle smooth profiles with ease
provide a much better approximation to the exact solution at the boundary. This discrepe
seemsto be the reason why FCT schemes sometimes produce saw-like profiles given sn
initial data.

In fact, the homogeneous Neumann boundary condition is a direct consequence of
conservation property of discrete diffusion operators. If we add artificial dissipation whi
requiring strict mass conservation, the numerical solution will be forced to bend so
to prevent any nonphysical diffusive flux through the boundary. Hence, it is worthwhi
to reconsider the concept of mass conservation and endorse the outflow of mass du
numericaldiffusion. The aforementioned boundary integrals represent in essence numer
fluxes which cater for a consistent boundary treatment.

A feasible strategy motivated by the above considerations is to construct the discl
low-order transport operator so as to leave the rows corresponding to outflow bounc
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nodes unchanged. To this end, we can replace formula (33) by

dii = —Zdik, dij = max{O, —kg‘}, dji =0 (62)
ki

if i is an interior node andl is a node on the outflow boundary. Note that the symmetr
of antidiffusive fluxesf;; = —f;; is lost for boundary nodes, so that the limiter and the
assembly process have to be modified appropriately.

For our one-dimensional example, we obtain

N v -1 1 ~ L v |0 0
D_z{o o]:K _2{1 —1]’ (63)

which is equivalent to adding the missing boundary integral. It is noteworthy that all o
diagonal entries of the low-order transport operator are stillnonnegative, so that the positi
of the low-order solution is guaranteed. This will also be the case, e.g., for bilinear eleme
provided the velocity and mesh size do not exhibit abrupt changes in proximity to the outfl
boundary. A proof for the case of a uniform mesh and a constant velocity is available. |
quite straightforward and will not be presented here.

Another simple way to get rid of ripples is to abstain from adding any artificial diffusio
in the boundary layer, i.e., sef; = d; = 0 if one of the nodes belongs to the outflow
boundary, while the other one resides in the interior. This approach preserves the symn
of fj; and is probably to be preferred because of its lower complexity. Boundary adjustm
should not be applied to convection—diffusion problems with Dirichlet boundary conditio
prescribed at the outlet.

7. NUMERICAL EXAMPLES

Let us substantiate the new FEM-FCT methodology by a number of one- and tv
dimensional examples. The Lax—Wendroff and Crank—Nicolson schemes are second-c
accurate intime and produce virtually identical numerical results. Hence, it suffices to ex:
ine the behavior of the Lax—Wendroff (LW/FCT) and backward Euler (BE/FCT) method
Unless otherwise indicated, the 1D solutions were obtained on a uniform mesh of 100 lir
elements, whereas a Cartesian mesh of 4228 bilinear elements was employed for the
2D examples. The time step was chosen rather small in most cases in order to reduc
temporal error for the first-order accurate backward Euler method. However, some soluti
for Courant numbers exceeding unity are also presented.

Convection of a Step Function

As a classical one-dimensional test problem, consider pure convection of a discontint
step function with unit velocity. The time stet is set equal to 16, which corresponds
to the Courant number = 0.1. The first method to be evaluated is the explicit FEM—FCT
scheme based on the Lax—Wendroff time stepping. The numerical restilts @6 are
depicted in Fig. 1. Here and below, the dash-dotted line stands for the initial data, and
dotted line designates the analytical solution.

As expected, the high-order LWFE method entails undershoots and overshoots of «
siderable amplitude, while the low-order solution is monotone but corrupted by exces:s
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High-order method (LW) Low-order method (‘upwind’)
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FIG. 1. Convection of a step function. Lax—Wendroff/FCT scheime,0.5.

numerical diffusion. Flux correction brings about a dramatic improvement, but the soluti
exhibits some imperfections if the prelimiting step is omitted. By far the most accure
results are produced by the FEM—-FCT method equipped with prelimiting. This serves
an evidence that the preprocessing of antidiffusive fluxes is a valuable complement to
FCT procedure.

Let us compare these results with those obtained by the fully implicit BE/FCT scher
(see Fig. 2). Even though the Courant number is rather small, the backward Euler methc
seen to be diffusive because of the first-order time discretization. At the same time, itis nc
oscillatory as the LWFE scheme. The implicit “upwind” method yields essentially the sar
results as its explicit counterpart. Itis evident that the implicit FEM—FCT algorithm also do
a very good job in combining the advantages of high- and low-order schemes. The nonpl
ical oscillations are filtered out completely, while the slope of the profile remains the sar
As the time step is refined, the accuracy approaches that of the explicit LW/FCT schen

Inviscid Burgers Equation

The inviscid Burgers equation (58) is a standard model problem for nonlinear convect
in one dimension. It is frequently employed to assess the ability of numerical methods
deal with formation and propagation of shocks. Let us start with a discontinuous init
profile and simulate its evolution up to the timme- 0.4. The numerical solutions produced
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High-order method (BE) Low-order method (‘upwind’)
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FIG. 2. Convection of a step function. Backward Euler/FCT scheme.5.

by the FEM—FCT schemes are displayed in Fig. 3. The nonlinearity was treated by the fi
point defect correction method as described above.

In turns out that the effect of the prelimiting step is not so pronounced in this settir
Furthermore, the LW/FCT and BE/FCT yield solutions of comparable quality. At the sar
time, the fully implicit scheme is unconditionally positive and can be applied at Coure
numbers greater than unity. An example for = 2Ax demonstrates that large time steps
degrade the accuracy, but the numerical solution still looks quite reasonable. This indic
that realistic applications can be efficiently simulated. Note that in all cases the sh
propagates with correct speed, which implies that the mass is conserved.

Convection of a Cosine Wave

Let us come back to linear convection problems with constant velocityl. If the initial
data is smooth enough, then the conventional Galerkin method performs remarkably v
As a matter of fact, it was used to compute the dotted reference solution for the cosine pr
in Fig. 4. Hence, flux correction is superfluous in this case. However, it is often impossi
to detect such situatiorsspriori. For most practical CFD applications, the smoothness c
the unknown solution varies in space and time. Therefore, the numerical method shoul
capable of handling both smooth and discontinuous data.

The first plot in Fig. 4 reveals that the FCT algorithm in its original form can pollute th
high-order solution by spurious ripples which can be traced back to the outflow bound:
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LW/FCT without prelimiting LW/FCT with prelimiting
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FIG. 3. Inviscid Burgers equation. Solutiontat 0.4.

The time step was deliberately chosen very small in this example, since this was foun
amplify the perturbations. Any of the techniques for boundary correction proposed ab
makes it possible to restore the smoothness of the solution and obtain accurate results
BE/FCT scheme remains stable and positive for Courant numbers beyond unity, altho
the amplitude of the wave is dampened appreciably.

Stretching/Compression by a Variable Velocity

The next two examples illustrate the performance of our FEM—FCT schemes for lin
convection problems with velocity depending on the spatial coordinate. The nonunifo
velocity field is intended to expose the behavior of the methods under circumstances wh
physical growth or decay of extrema occurs. It is important to ascertain that the flux limi
is able to distinguish between physical and nonphysical extrema.

Consider a step function which is convected and spread by the variable velocityfietd
as shown in Fig. 5. In this case, both LW/FCT and BE/FCT deliver nonoscillatory but qui
diffusive numerical results. Note that the left border of the profile is resolved consideral
better than the right one, since the Courant number increases.Miifhould be emphasized
that the observed smoothing is not a deficiency of flux correction. In fact, the high-orc
method produces an equally diffusive solution with oscillations superimposed on it.

If the transported profile undergoes compression rather than stretching, the algori
performs much better. This is exemplified by Fig. 6, where the velocity is taken to |
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LW/FCT without adjustment LW /FCT without adjustment

FIG. 4. Convection of a cosine wave. Solutiontat 0.5.

v = 1 — X. In this case, the mass gradually accumulates in the center of the computatic
domain. The solutions obtained by the LW/FCT and BE/FCT schemes are virtually identi
and exhibit superb accuracy.

Convection of Monotone Profiles

The following one-dimensional test problem deals with the convection of monotone dz
Let the initial profile be a smooth approximation to the Heavyside step function. The frc

LW/FCT, At = 10-3 BE/FCT, At = 1073

o8r
06
041

a2r

FIG. 5. Stretching by the variable velocity field= x. Solution at = 1.0.
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LW/FCT, At = 1073 BE/FCT, At = 1073
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FIG. 6. Compression by the variable velocity fiald= 1 — x. Solution at = 1.0.

is chosen to be rather steep, so that flux correction is required to preclude the arisini

undershoots and overshoots.
The numerical solutions produced by the FEM—FCT schemes in the case of cons

velocity v = 1 are compared with each other and with the exact solution in Fig. 7. Tt
explicit LW/FCT scheme provides an excellent resolution of the front, while the implic
BE/FCT scheme is moderately diffusive for “large” time steps. It can be seen that b
methods are free of false antidiffusion inherent, e.g., to the popular superbee limiter [2
Thus, no artificial steepening of the profile takes place.

Convection of the same function with the variable veloeity x is investigated in Fig. 8.
The qualitative behavior of the methods is essentially the same as in the case of con:
velocity. It is noteworthy that, in contrast to the stretching of a discontinuous pulse,
pronounced extra smearing is observed.

Steady-State Convection-Diffusion in 1D

As we have seen, the fully implicit BE/FCT scheme is quite diffusive for transier
convection problems. At the same time, it appears to be very attractive as an itera

LW/FCT, At =103 BE/FCT, At = 1073

o8-

06

04r

02r

o 02 04 0.6 08 1 12 14 16 1.8 2 o

FIG. 7. Convection of a monotone profile with= 1. Solution at = 1.0.
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LW/FCT, At =108 BE/FCT, At =103

08r 0.8

06 06

04r 04

02 02|

L L L L n L L L s L L n L L L L
0 0.2 04 0.6 0.8 1 12 14 16 18 2 0 0.2 0.4 0.6 08 1 12 14 16 18 2

FIG. 8. Convection of a monotone profile with= x. Solution at = 1.0.

solver for (quasi-) steady-state convection—diffusion equations. Indeed, the steady-
solution can be obtained by applying a FEM—FCT method to the associated time-depen
problem. Possible nonlinearities can be treated in the same iterative loop. The temp
accuracy of the method does not matter in this case, since the time step is merely an ¢
cial parameter which determines the convergence rates. In fact, local time stepping ca
employed [5]. As long as the accuracy of the converged solution depends entirely on
spatial discretization, it is expedient to choose the time steps as large as possible, so
reduce the computational cost. This makes explicit schemes noncompetitive, since the:
subject to a restrictive CFL condition. Moreover, the numerical solution produced, e.g.,
the Lax—Wendroff method is affected by the streamline diffusion depending on the artific
time step. Hence, steady-state problems call for an implicit treatment.
Consider the one-dimensional stationary convection—diffusion equation

au 92u

™ 68x2 0, u(0 , u@ =0

v
for v =1 ande = 1072, which corresponds to the Peclet numitRer= 100. This is a
singularly perturbed elliptic problem, which is characterized by the presence of a sharp fi
next to the outflow boundary = 1. The boundary layer develops because the solution of tt
reduced probleme(= 0) does not satisfy the homogeneous Dirichlet boundary conditic
imposed for the full problem.

Let us discretize the domain by a uniform mesh of 10 linear elements and compare
results produced by the backward Euler scheme without and with flux correction. As
initial guess, we take the straight lim€ = 1 — x. The obtained solutions are displayed in
Fig. 9. The standard Galerkin method reduces to the central difference approximat
which is seen to be oscillatory for the coarse mesh under consideration. Remarke
the flux-corrected steady-state solution is nodally exact. Actually, even the “low-orde
method yields excellent results in this case. Recall that the tensor of artificial dissipat
is constructed in such a way that it just compensates the lack of physical diffusion
any physical diffusion is present, then less artificial diffusion is required to enforce pc
itivity. Thus, for e > 0 the low-order scheme is less diffusive than the classical upwir

method.



552

The first two-dimensional example shown in Fig. 10 is a direct generalization of tl
1D problem dealing with the uniform convection of a step function. In the 2D case, tl
computational domain is a unit square. The velocity is constant and equal to unity
each coordinate directiorv. = (1, 1). Homogeneous Dirichlet boundary conditions are
prescribed on the inflow boundarigs= 0 andy = 0. A discontinuous initial profile is

BE, Az =0.1

KUZMIN AND TUREK

BE/FCT, Az = 0.1

FIG.9. Steady-state convection—diffusion in 1O= 1072,

Convection of a Discontinuous Profile in 2D

transported along the streamlines, which are parallel to the diagcaat.

The numerical solutions at the time instant 0.5 obtained by the prelimited LW/FCT
and BE/FCT schemes corroborate the diagnosis made on the basis of the one-dimens

Initial data

Exact solution

FIG. 10. Convection of a discontinuous profile. Initial data and solution-at0.5.
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examination. Both methods succeed in the elimination of wiggles and preserve the steer
of the profile fairly well, unlike the underlying low-order scheme. What might look like
an overshoot at the leading corner is just an optical effect due to lateral erosion (actu
0 < u < 1 everywhere). The temporal error induced by the backward Euler time stepp
is still nonnegligible for the employed time steyt = 10°2. It is evident that the second-
order LW/FCT scheme outperforms the first-order BE/FCT scheme when it comes to
time-accurate solution of transient convection problems.

Convection of a Smooth Profile in 2D

Our next test problem deals with the evolution of a sinusoidal profile. Consider t
same computational domain and velocity field as in the previous example and let the in
condition be given by

u(x, y, 0) = sin(2zx) - sin(2ry).
The prescribed boundary conditions are
u(0, y,t) = —sin(2rt) - sin(r(y —t)),

u(x, 0,t) = —sin(2rt) - sin2r(x —t)),

so that the initial data matches the exact solution at the tigd..0.
The numerical results produced by the FEM-FCT schemes with boundary correction
displayed in Fig. 11. Allremarks regarding the treatment of outflow boundaries remain ve

Initial data/exact solution, [Jullcc =1.0 LW/FCT, At = 1073, ||u||cc = 0.9969

s [
e T
e B4
n?\(.—— 0z
Ve

BE/FCT, At = 1073, ||ulloo = 0.9874  BE/FCT, At = 102, [[ul|e = 0.9041

’ Py }{f{ﬂ“

FIG. 11. Convection of a smooth profile. Initial data and solutioth at 1.0.
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in two dimensions. The maximum norm of the solution quoted in the diagrams serves a:
indicator of numerical damping. The diffusive nature of the BE/FCT method is excused
some extent by its ability to operate with larger time steps.

Rotation of a Cylinder with a Slot

Let us turn to the investigation of a solid body rotation in a nonuniform velocity fiel
v = (=Y, X). The counterclockwise rotation takes place about the center of the squ
domain(—1, 1) x (—1, 1). The initial data is a cylinder with a slot defined by

1, R<1/3and(x| > 0.050ry > 0.5),

utx. . 0) = {0, otherwise

where

R= X2+ (y—1/3)2.

This challenging two-dimensional benchmark problem was consideredbgerét al.
[25], Zalesak [36], and many others.

Figure 12 demonstrates that both LW/FCT and BE/FCT produce excellent results
long as the time step is small enough. The prelimiting of antidiffusive fluxes has provec
be expedient for this problem. If it is omitted, the numerical solution is contaminated |

Initial data/exact solution LW/FCT, At =103

8 -4 -2 ®

4% -0 04 0F ] o a4 B

BE/FCT, At = 10~2

FIG. 12. Rotation of a cylinder with a slot. Initial data and solutiort at 2.
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innocuous but ugly ripples. The last diagram illustrates the behavior of the implicit sche
at large Courant numbers. Since the velocity increases with distance from the origin,
slot is resolved considerably better than the rear of the cylinder.

Steady-State Convection—Diffusion in 2D

Finally, let us illustrate the advantage of the BE/FCT method by a two-dimensior
steady-state example. The convection—diffusion equation at hand reads

V-Vu—eAu=0 inQ=(0,1) x (0,21,
wherev = (cos 10, sin 10°) ande = 103, The concomitant boundary conditions are

1, y>05,

ou
37y(x’ 1)=0 ux0=uly =0 u@y= {O, y < 0.5.

A reasonable initial approximation is given by

1-x, y=>0.5,

0 _
u (X’y)_{o, y <05

For practical applications, it is worthwhile to compute the stationary low-order solutic
using any direct or iterative solver, and then activate the time-dependent FEM—FCT al
rithm. In this case, the cost of flux correction is minimized, since the initial guess should
close enough to the steady-state limit. Furthermore, the use of the consistent mass
is not justified for stationary problems, so that mass lumping is appropriate also for
high-order scheme.

The numerical solutions obtained by the BE/Galerkin and BE/FCT schemes on a unifc
mesh of 32x 32 bilinear elements are depicted in Fig. 13. It is observed that the Galer}
method without flux correction gives rise to spurious oscillations in the boundary lay
This is obviously not the case for the flux-corrected solution, which is highly accurate &
satisfies the discrete maximum principle. It follows that BE/FCT is a promising solver f
convection-dominated (quasi-) steady-state problems, which makes up for its low temp
accuracy exposed in the previous examples.

BE, h = 1/32 BE/FCT, h = 1/32

{7

..
i =i
LT 4{1' "‘ i

FIG. 13. Steady-state convection—diffusion in 2D= 1073,
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8. CONCLUSIONS AND OUTLOOK

A new approach to flux correction for finite elements was presented. Its major highligl
include: the novel technique for the construction of nonoscillatory low-order schemes,
flux-based representation of antidiffusive terms, and the extension of the FEM—FCT mett
ology to implicit time discretizations. The low-order transport operator was constructed
elimination of all negative off-diagonal entries of the discrete high-order operator. A de
sive advantage of this strategy is its applicability to arbitrary finite element matrices a
the fact that it yields the least diffusive positivity-preserving method, which is superior
the upwind discretization if any physical diffusion is present. The structure of the discre
antidiffusion operator was exploited to decompose it into a sum of internodal fluxes whi
can be processed in much the same way as their finite difference counterparts. In partic
an extra prelimiting step was reintroduced to get rid of spurious ripples which are gen
ated otherwise. The flux-based algorithm is readily portable to higher dimensions, so 1
the same subroutines can be used in 1D, 2D, and 3D implementations. The mechan
underlying flux correction were analyzed on the basis of rigorous positivity criteria, a
an implicit version of the FEM—FCT procedure was elaborated. A unified flux limiter we
devised for explicit and implicit schemes. It was proved that the fully implicit backwar
Euler method is unconditionally positive, whereas other schemes are subject to a CFL-
condition. The upper bound for the time step is easily computable and can be used to ¢
adaptive time stepping.

The behavior of the proposed schemes was studied numerically for both evolution
and steady-state problems. Encouraging results were obtained for a wide range of |
and two-dimensional examples. The best transient solutions were produced by the sec
order schemes of Lax—Wendroff and Crank—Nicolson type. The backward Euler metho
first-order accurate in time, but it constitutes an excellent solver for steady-state proble
In addition, the implicit treatment is appropriate if a nonuniform distribution of Courar
numbers (due to adaptive mesh refinement or strongly varying velocities) makes the ¢
condition too restrictive. In other cases, explicit or semi-implicit time stepping shou
be employed for accuracy reasons. Hence, both explicit and implicit FEM—FCT schen
belong in a CFD toolbox for convection-dominated transport problems.

Apart from the simple test problems considered in this paper, we have successfully
plied the new FEM—FCT algorithms to scalar transport equations governing the evolut
of phase holdups and concentrations of species of gas—liquid reactors [23]. Such cou
multiphase flow problems described by two-fluid models are especially sensitive to ni
physical oscillations and excessive numerical diffusion, so that the use of high-resolut
schemes is indispensable [34]. One of the feasible directions for further research is the
tegration of flux limiters into incompressible flow solvers for the Navier—Stokes equatio
in the medium and high Reynolds number regime. Even though the presence of the vis
term makes the velocity less susceptible to undershoots and overshoots, linear high-c
methods of the streamline diffusion type sometimes yield unsatisfactory results (e.g., in
case of strongly anisotropic meshes). Since the cost of flux correction is rather high, it mi
be used interchangeably with cheaper artificial viscosity methods. The latter ones cal
based on the same high- and low-order transport operators but use some heuristic se
(e.g., the local Reynolds number) to determine the blending factors.

As elucidated in the monograph [35] and illustrated by representative benchmark com
tations in [30], unconditionally stable implicit schemes appear to be particularly attract
for the treatment of the incompressible Navier—Stokes equations. On one hand, exg
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schemes for the Burgers equation do not require any advanced linear algebra tools,
the consistent mass matrix can be efficiently “inverted,” e.g., by just a few Jacobi-like it
ations using the lumped mass matrix as a preconditioner. On the other hand, the pre:
Poisson equation represents an ill-conditioned elliptic problem which has to be solve
each time step. Consequently, the CFL condition may become a formidable bottleneck
that a more implicit approach is to be preferred.

It should be emphasized that implicit schemes, including those with flux correctic
stipulate the use of optimized multigrid techniques [30]. Otherwise the advantages of
conditional stability cannot be realized due to a disproportionally high computational ¢
per time step. Therefore, the development of properly tuned linear multigrid solvers is «
of our top priorities. Other aspects to be investigated include the application of FEM—F
schemes to systems of equations and locally refined unstructured grids, combination
adaptive error control mechanisms in space and time, as well as the extension to non
forming finite elements and higher order approximations. These issues are currently ul
research and will be addressed in forthcoming papers.
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